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An integral equation describing a “wave” transport of heat in a plasma by means of
plasma waves is derived. The propagation of thermal perturbations from an
instantaneous point source can be more rapid than in the case of diffusion. An
example of heat transfer across a magnetic field is examined.

In this letter we demonstrate that the temperatures at different points in a plasma
may be related in a nonlocal way. Such a relationship stems from the emission and
absorption by particles of plasma waves which have long ranges and which iead to a
correlation of the temperature over distances far greater than in the case of ordinary
processes of the diffusion type. In this regard the problem is analogous to problems of
the radiative transport of an excitation.! Since there are some special (natural) wave
frequencies in a plasma, this “wave” thermal conductivity is more reminiscent of
radiation transport in discrete lines than in a Planckian continuum, as in the case of
radiative heat transfer.> We should point out that a nonlocal relationship between
perturbations can also occur in the case of ordinary collisional transport, by virtue of
the long mean free paths of the fast particles” (tail particles).® We will ignore such
process here, however, as we are justified in doing in the case of (for example) heat
transfer across a strong magnetic field.

We begin with equations for the spectral intensity of the plasma waves, I, and the
balance equation for the energy carried by these waves:
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where s is the wave propagation direction, ¢ is the electron energy density, Q is an
external heat source, n(w,s) is the refractive index for the waves, and j and « are the
emission and absorption coefficients, which are related to the emissivity  of plasma
waves by*

) 17302 of

j= fnw,s,p)f(p)dp, a=—m 'n(wsp)dp (3)

Here f(p) is the distribution function of the plasma electrons; € = p?>/2m,; and in the
equation for a it is assumed that fis directionally isotropic.

We are ignoring temporal retardation in Eq. (1) (the retardation due to the finite
magnitude of the wave group velocity V,, ). This is a legitimate simplification if V,,
> V., where V; is the front velocity of the thermal wave described by Egs. (1) and
(2).

To some extent, system (1) is analogous to the system of transport equations in
weak-turbulence theory.’ There is the distinction that the heat transport over space is
caused by plasma waves, rather than by fast particles. A situation of this sort occurs
when transport by particles is hindered (e.g., for a transport across a strong magnetic
field).

Equations (1) and (2) establish the relationship between generally different func-
tionals j and ¢ in (3). To close system of equations (1) and (2), we thus need to find
some additional relations between j and a. We can do this by solving the system of
quasilinear equations for the function f (Refs. 5 and 6). If the perturbations are small,
however, we can ignore the deviation of the electron distribution function from a
Iocally equilibrium (Maxwellian) function. The functionals j and « are then related by
Kirchhoff ’s law*:

7 (w,8)/ & (w,s)=n*w*T(r) | 8nc?, 4)

where T(r) is the electron temperature. Using (4) and substituting formal solution
(1) into (2), we find a nonlinear integrodifferential equation for the temperature.
Linearizing it in the small parameter Y=467(r)/T,, where 8T is the deviation of the
temperature from its uniform equilibrium value 7;, we find an equation analogous to
the Biberman-Holstein transport equation for resonant radiation’:

oY XY, fY(r)G(Ir—r l, s) dr’ +0, s-_';'__ (5)
dt T fr —r'|

where the kernel G(|r — r’|,s) describes the probability for the absorption at the point
r of heat radiated at the point 1’ in the direction s. It is expressed in terms of the

probability T(p), which is the probability for the traversal of a distance no less than p
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by a plasmon without absorption:

G(p,s)=—71)2——a£&§), T(p,s)=—}—fj(w,s)e‘°‘<w’8’ﬂdwdszs_ (6)

The time scale 7 in (5),

17 =fdwdszsj(w,s)/-;-ne Ty = J/-:;—ne To , (7)

describes the “lifetime” of the temperature due to the radiative loss of waves. The
dependence of the kernel G on the direction s incorporates the presence of an external
source of an asymmetry (which we assume below is a magnetic field).

We seek the law of motion of the front of the “thermal wave” from the source
Qw8(1)5(x)8(y) across the magnetic field B{|Z through the emission and absorption
of Bernstein modes.*® Working from an analysis of various results of radiation trans-
port theory,”® we can show that in this case the time scale for the propagation of the
thermal wave over a distance R = (x2 + y*)'/2 from the point of the source, R = 0, is,
for t>1,

7 R)~ Lraa T (R sy=rdwdn i) el Lo, )1/ -2n,T,,
T sin 0 sin 0 2

(8)
where @ is the axial angle made with the Z axis. In specific calculations of time (8) we
use the dispersion law for Bernstein modes which are propagating essentially across a
magnetic field.* We also make use of the independence of the heat transport in the
various harmonics at @, Swp (@, and o, are respectively the plasma frequency and
cyclotron frequency of the electrons). Assuming a Doppler mechanism for the broad-
ening of an individual radiated mode, and estimating the integrals in (8) for
R=(Rwy6/v,)> 1, we find

t(R}’v Tovo ?élnﬁl 5= .2 (9)
cwp 8 = (wp/wp )%

where v, = ,/2T,/m, is the electron thermal velocity.

We see that the law of motion of the front is nearly uniform and is different from
a diffusion law. The time #(R) is dominated (at t> 7, R>1) by a region of the param-
eters w and s in which the function j (and also «) is small in comparison with its
maximum value (the “wings of the line”). The behavior of j and @ at the wings turns
out to be of such a nature that a formal expansion of Eq. (5) in |r —r'| leads (in an
unbounded space) to a differential equation with an infinite diffusion coefficient. This
is the “nondiffusion-nature” singularity of the wave transport of perturbations in a
homogeneous medium (in contrast with the usual estimate’ of the contribution of
oscillations to the effective diffusion coefficient).

Let us find the distance r*, over which the front [see (9)] of a thermal perturba-
tion carried by waves overtakes a front which is undergoing a diffusion motion and
which is caused by a collisional electron thermal conductivity in a magnetized plasma
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[Eq. (59, 28) in Ref. 10]. An estimate yields (A is the Coulomb logarithm)
r*wB/vo ~ AlnA . (10)

We see that the wave thermoconductivity “overtakes” the collisional conductivity over
distances on the order of 10'-10” Larmor radii.

This analysis demonstrates that there is the possibility in principle of a substantial
acceleration of heat transport processes by virtue of the nonlocal nature of the propa-
gation of plasma waves. To determine the significance of these effects in real fusion
systems, we would need to allow for the various factors which substantially influence
the transport: variations in the plasma temperature and density, a deviation from a
Maxwellian electron distribution, the contribution of many harmonics, and so forth.
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