Metastable vortex in superfluid 3He-B
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A new vortex solution of the Ginzburg-Landau equations is derived. This new
solution describes a single-quantum vortex with a fourfold symmetry axis. This
vortex may explain an unusual metastable state which is observed in hysteretic
processes. The physical properties of the vortex are discussed.

Nuclear-magnetic-resonance experiments on rotating *He-B have revealed the
existence of at least two stable vortices which have a single quantum of circulation of
the superfluid velocity and which differ in core structure.'> Numerical analysis of the
Ginzburg-Landau functional near 7, has so far demonstrated the existence of two
stable vortices: an axisymmetric one** [of magnetic class C_,(C_ )] and an axially
asymmetric one>*® [of magnetic class C,, (C,)], or v-vortices. For each, parity is
violated in the core.

These two vortices may correspond to vortices which are observable experimen-
tally: The axially asymmetric v-vortex may correspond to a vortex at low pressures,
while the axisymmetric vortex may correspond to one at high pressures. In order to
make an identification of this sort, however, we still need (first) experimental proof
that the line of the observed first-order phase transition between vortices goes onto the
T. line. Second, it may turn out that second-order phase transitions occur far from 7T,
but have not yet been observed because of the continuity of the measured physical
quantities, for which the symmetry of the vortices found theoretically near 7T,
changes. Consequently, direct proof would consist of the observation of physical con-
sequences of the breaking of various symmetries in the core.’

Furthermore, the unusual behavior of the hysteresis loop (see Fig. 5 in Ref. 8)
suggests that yet another vortex—a metastable one—may exist. In order to determine
which symmetry class might correspond to this hypothetical third vortex, we have
sought possible metastable states near 7°.. For this purpose we minimized the
Ginzburg-Landau functional in classes of functions of various symmetries, making use
of the circumstance that by virtue of the symmetry the minimum which is found is
always a solution of both the Ginzburg-Landau equations and the Gar’kov equations,
although it does not necessarily correspond to an absolute minimum or even a local
minimum on the set of all functions.

We found that, along with the maximally symmetric o-vortex®” [magnetic class
D_,(C_,)], which seems to always be unstable, there is at least one more—a
fourth—solution, which belongs to class D,, (S,). The new vortex is more preferable
than the o-vortex from the energy standpoint; it is stable with respect to a transition to
an axisymmetric v-vortex, while it is unstable with respect to a transition to an axially
asymmetric v-vortex. Table I is a subordination diagram of the various symmetry
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TABLE 1. Symmetry breaking in quantized vortices in *‘He-B

D 4w (Cop) C..(C)
o-vortex (vortex with - axisymmetric v-vortex™
maximal symmetry),’?

' '

D,,(S,) G (63)
vortex with square - axially asymmetric v-vortex*
core

I U

D,(Cy) G,
spiral w-vortex” — spiral uvw-vortex

—6

The different types of arrows show different types of symmetry breaking

—  Breaking of a discrete symmetry, in the course of which a spontaneous electric polarization arises in the
core of the vortex along the axis of the vortex, and a spontaneous spin flux arises.

—— — Breaking of axial symmetry.

= Complete breaking of spatial parity, which gives rise to a cholesteric spiral in the vortex core and to a
spontaneous mass flux along the axis.

The four upper vortices were found as solutions of the Ginzburg-Landau equations near 7 ; the existence of
the last two vortices has not yet been checked in the Ginzburg-Landau region.

classes of the vortices. The different types of arrows indicate different types of symme-
try breakings in transitions from one core structure to another.

The new vortex has the following order-parameter structure, which corresponds
to class D,, (S,). Among the parameters C,, (r) in the expansion of the amplitudes
a,, for Cooper pairing with spin projection 4 =0, + 1, — 1 and with orbital-angular-
momentum projection v =0, + 1, — 1 in the harmonics of Q,

8y, (n9) = expli(l —u=v)p 1 ZC,,n QJe’¥

(7 is the distance from the vortex axis, and ¢ is the azimuthal angle), the following are
nonzero and real; C,, (Q = 4k) with u + v even and C,, (Q =4k +2) with u + v
odd (k is an integer). In these calculations we retained only three harmonics: Q = 0,
+ 2, — 2 (Fig. 1). This approach does not alter the symmetry or the topology, so that
it does not alter the conclusions.

The symmetry elements of this vortex are formed from the combined symmetries
PC, and TU,. The quantity 2,,a,,a¥, has a fourfold symmetry axis; i.e., the cross
section of the vortex has the symmetry of a square (Fig. 2). The properties of the
vortex which follows from the symmetry, and which can be used to distinguish it
experimentally from other (stable) vortices, are as follows: As in the case of o-vortices,
there are no spontaneous spin or mass fluxes or spontaneous electric polarization. In
the tensor of the vortical magnetic anisotropy,” the only nonvanishing component is
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A1, since there is no anisotropy vector in the cross-sectional plane of the vortex. In
contrast with the o-vortex, on the other hand, the superfluidity in the core is not
disrupted by the formation of boojums on the Fermi surface. The topology of the
boojums on the Fermi surface is the same as that of the axisymmetric v-vortex and
therefore different from the topology of the axially asymmetric v-vortex, which con-
sists of a bound pair of vortices with a half-integer circulation.® Consequently, a topo-

o

Loy (Coo) Dyq (S4) Ly (C5)

a b c
FIG. 2. Cross-sectional shapes of cores of various vortices. Within a core, boojums appear on the Fermi
surface (zeroes of the gap in the excitation spectrum®). At the points, the l-vectors of the boojums are

parallel to the vortex axis. a—v-vortex with “circular” core; b—new vortex with “square” core; c—v—vortex
with “double” core (a pair of half-quantum vortices).
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logical barrier which separates the vortex D, (S,) from vortex C,,(C,) can appear
far from T, so that the new vortex may be locally or even absolutely stable.

We note in conclusion that there has so far been no study of the stability of the
solutions for the v-vortices with respect to the formation of a spiral cholesteric texture
in the core of the vortex, which should arise in the case of axially asymmetry vortices
upon a complete breaking of parity (Table I). This study will require minimizing the
Ginzburg-Landau functional in all three spatial dimensions, since the length of the
vortex itself becomes a spiral.

This work was carried out as part of the ROTA Soviet-Finnish project.
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