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All types of nonuniform semiconductor structures are classified on the basis of an
effective Dirac Hamiltonian. For one version—an antiferromagnetic domain
wall—there is an analogy with the chiral anomaly, manifested as the presence of a
magnetic moment perpendicular to the plane of the wall.

The classification of semiconductor heterojunctions which is presently being used
is based on a comparison of the width of the energy gap €, and the work function ¢ of
the materials in contact.! However, €, (r) and ¢(r) do not exhaust the list of physical
fields which might be responsible for a nonuniformity.

For a two-band semiconductor, whose energy spectrum can be described by the
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Dirac equation (e.g., IV-VI compounds?®), the Hamiltonian in the effective-mass ap-
proximation is actually completely spherically symmetric (if the mass anisotropy is
ignored). This symmetry allows perturbations corresponding (in relativistic notation)
to the covariant bilinear forms

. . i ,
[—mo + vy* (16”——eAM)+ vsP + 17“75Mu+ 57"7”FW]W =0, (1)

where my(r) =€, (r)/2, A, = (@, — A), P(r) is a pseudoscalar, M, (r) = (My,M) is
a pseudovector, and F,,, (r) = (E,B) is an antisymmetric tensor (E and B are polar
and axial vector fields which are by no means necessarily electric and magnetic fields).
Instead of the velocity of light in (1) we have the interband velocity matrix element v,
which may be regarded as a scalar if we ignore the crystallographic anisotropy. In the
steady state, the Hamilton’s form of Eq. (1) is

<e¢ *mo+ M+B)T—¢ vo(p—eA)— ioE+ x‘P—Mo) w1> o o
H.a. ep~my+ (M—B) ¢~ ¢ A

Since we are actually dealing with only the spatial symmetry, not the complete Lor-
entz group, the quantities M and M|, are independent, as are B and E, and as are ¢ and
A.

At an ordinary heterojunction ¢ and m, would be functions of the coordinate z. A
change in the sign of my(z) corresponds to an inverse contact.>* A perturbation of E
occurs in ferroelectric semiconductors. A nonuniformity of E(z) may take the form of,
for example, a domain wall.> As was shown in Refs. 3-5, two-dimensional boundary
electron states exist in nonuniform structures of this sort."”

The diagonal terms of (M 4- B)& may be thought of as the contribution of remote
bands to the electron and hole g-factors.? If we return to the explicit form of the basis
functions,® we easily see that the matrix element iP corresponds to an interaction with
an antiferromagnetic subsystem, while M|, corresponds to a spin-orbit perturbation
due to an odd component of the crystal potential.

For a uniform antiferromagnetic semiconductor, omitting from (2) all external
fields except P(z) = P, we find

ek, k)= x[m>+ P* + h2v2 k2 + K2))V2, (3)

where &, and k, are the projections of the quasimomentum onto the z axis and onto
the perpendicular plane. In the presence of a domain wall we would have
P(z— + ») = + Pand P>0; squaring (2), we find the wave equation of supersym-
metric quantum mechanic?

[(voz£, F iP(Z))?(vazﬁz tiP(z)) + W0k + ml — €1y, = 0. (4)
1

The zero mode of this equation, ({”, #{°) corresponds to 2D states which are
localized near the domain wall and whose spectrum

eotk))= * (mg + Wk yY? (5)
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is not degenerate because of the fixed spin structure of the functions ;> ~|1) and
¥ ~11)°

In a magnetic field A directed parallel to the z axis, Eq. (2) becomes

(mo— e (op, +iPfz)) + o + o m)(%): N “

¥
o, and 7 are “raising” and “lowering” spin and orbital operators, and we have the

commutation relation [7,, w_] = — 2|e|#H /c. Since for the states of the zero mode
we have o, ¢\” = o _¢{” =0 and [vo,p, + iP(2) [¥2”(z) = 0, we find from (6) the
1

H.a. — My — €

Landau levels

€ofn) = t(m} + 2nh?0*/ L)Y V?; n=1,2,3,..
60(0) == mOSignH’

(7)

where L = (c#i/|eH |) 172 is a magnetic length. At H> 0, the level + m, is absent, since
we have 7, ¢ {0, while the normalized solution of the equation 7_¢ {* = 0, which
corresponds to the level — m,, exists. If the sign of H is changed, the operators 7.
and 7_ exchange roles, with the result that the level — m, disappears, and a state
€,(0) = + m, appears. The symmetry of the spectrum under the replacement € - — €
is thus broken.

A “hop” of the Landau zero level and thus a jump in the energy upon the inver-
sion of the field imply the presence of a magnetic moment which is oriented along the z
axis. As a result, as in (2 + 1) electrodynamics,® we loose the symmetry under reflec-
tion through a plane passing through this axis, despite the fact that in the limit # -0
the symmetry € > — € is restored.

In electrodynamics, a chiral anomaly is manifested through a vacuum charge
density and a vacuum current density, both universal (in the given field). Since in any
heterostructure the chemical potential u is fixed by the volume and is in principle
arbitrary, in our case these quantities are not universal, being determined by the filling
of the zero mode. On the other hand, the magnetic moment per unit area,

1+ exp [(u+ mg)/ T]

- (8)
1+ exp{(u—-mo)/T]

1 T .
77}=_ S5 | Q/H) = @ —H)] = S~ (signP) In

is, at 7= 0 and u > m,, equal to simply (m,/¢,) sign P and does not depend on |P |!
(See Fig. 1; here ¢, = 2mrfic/le] is the quantum of flux.) In the limit P—0, the localiza-
tion length of the moment along the z axis increases without bound, so that the volume
density of the moment tends towards zero. The moment .# arises from the presence of
a special direction, specified by grad P(z) in the third dimension [which is of course
not present in (2 + 1) electrodynamics].

We conclude with a brief discussion of the field M (r). Retaining only the pertur-
bation My(r) in (2), we find

vopY;y = [~Mor) £ v & — m2 1y, , 9)
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m, L = FIG. 1. Density of the magnetic moment of an antiferromag-
@, >0 netic domain wall versus the chemical potential u at various
—_ —_— temperatures. The interval — m, <p <m, corresponds to the
energy gap, and ¢, is the quantum of flux.
1
~Mg mg M

where |€| > m,. In contrast with the other fields which we have considered, the non-
uniformity M, (r) apparently cannot localize electrons. This fact is obvious for a 1D
structure M,(z), since

. z ———
Ut (z) ~ exp —hl; J [~ Mofz) £ /€ — m}]dz (10)
0

We accordingly restrict the discussion to the case M(r) =M, = const. If there is no
external magnetic field, the energy spectrum becomes

ek) = t{ml + (Mo + Wwik|)]"? (11)

In a magnetic field H ||z, the Landau zero subbands loose their symmetry under the 4
replacement k, - — k,:

e, (mk) =% {ml+ Myt vk 122} n=1,23,. (12
e((),kz) = 4 {mg + My - hvkz ) 2

The extrema of the zero subbands shift an amount &k, = M,/#v in the direction of the
magnetic field. For a massless two-component Weyl equation in (3 4+ 1) dimensions,
the asymmetric zero mode created by the magnetic field intersects the axis € =0,
giving rise to an Adler-Bell-Jackiw current anomaly.” In our case, the equation is a
four-component equation, so that a current state does not arise. An energy spectrum of
the type in (11), (12) may arise by virtue of the spin-orbit interaction in a semicon-
ductor lacking a center of symmetry. In particular, the conduction band of tellurium is
of this nature.'

I wish to thank S. M. Apenko for calling my attention to Ref. 9.

"The term i&E corresponds to the anomalous magnetic moment of a Dirac particle. For a neutron in the
electric field of a charged plate, there thus exist supersymmetric bound states, according to Ref. 5, with an
energy which depends on the two-dimensional momentum.

?This case is mathematically equivalent to an inverse contact in a uniform antiferromagnet’ [ P(z) = const;
m, = my(z)], since the corresponding Hamiltonians are coupled by a unitary transformation.
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