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A general theory of relaxation of two-level systems in an amorphous metal, with
allowance for the tunneling-induced electron polaron effect, is developed. The
anomalous behavior of the absorption of a low-frequency sound resulting from the
transition to the superconducting state, which was observed in Refs. 1 and 2, is
explained.

1. Recent experimental studies of the absorption of a low-frequency sound in
metallic glasses in the normal and superconducting states'” have shown that the inter-
action of two-level systems with conduction electrons is extremely nontrivial. At first
glance, this experimental result contradicts the standard description of such systems,
which is the principal assertion of these studies.

A meaningfu! analysis of the problem requires a suitable theory for the relaxation
of two-level systems in amorphous metals, which goes beyond the scope of the existing
simplified results (see the review by Black®). In an effort to develop such a theory, we
will use the recently obtained general solution of the problem of tunneling of heavy
particles in a metal® (below cited as I), where the electron polaron effect is important
(see Refs. 5 and 6; a similar problem in the case of interaction with phonons was
analyzed in detail in a review by Leggett ez al.”). The results obtained for a two-well
potential, which are general in nature, can be used to describe tunneling along an
arbitrary collective coordinate with an effective heavy mass, without the knowledge of
the true microscopic nature two-level systems.

2. Situated in a separate well for a time 7;, a heavy ‘“particle” forms a many-
electron wave function which is generated by virtual electron-hole pairs with an ener-
gy in the range from v, = 7,7 ! to ~¢€x. We see from 1 that if the “particle” is tunneled
with a characteristic frequency @, the excitations with an energy o < €<€, follow the
particle adiabatically, causing a renormalization of the potential relief. The slow exci-
tations, v, < € <w, cannot keep track of the particle, and the wave function corre-
sponding to them, which remains in the well, is responsible for the electron polaron
effect. This function can be constructed as an eigenstate ¥} of a single-well Hamilto-
nian,

Y = gV« H, + v v o=yl - V,f;/ (i=1,2), (1)
where
/l} _ [ . A+ A
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is the interaction of the *“particle” with electron-hole pairs with an energy |e, — €|
<a. In the ¥\” representation, the effective Hamiltonian of the two-level system is
H, =Y + +Y Vo, +1 Ao A= (Ao, ;
orr = 1280, 80,41, Vo 1A )o, 3)
= . V=y0 _ @)
An = Ao (AY; v=yo-ve

Here A, is the amplitude of the transition in the absence of interaction with electrons,
£ is the relative level shift in the wells (A& €®), and A is the polaron operator, whose
matrix elements A,,, = {(¢'"|¢'?) determine the overlap integral.

The infrared divergence characteristic of the electron polaron effect determines,
in the limit |6, — €,.|—0, the peculiar behavior of the tunneling amplitude A, diag-
onal in the excitations. A direct determination of (A) with allowance for the interac-
tion cutoff in (1) at low frequencies, gives the following expression for the case
E=0v,=v,=7""):

« ,n(L-n) ) |
A op = Aoexpl —b [f dede ————— (1 —cos(e—e)r) .
- (e—¢€) J

/

|ow ~
= Agexpy— b{ dy/y coth Y /50 (1 — cosyr) } = AofT)exp { —bln(sinh 7Tr)};  (4)
{ -

BolT) = Boexp (- b/ 0} b= p*Ep) V) - V312 (5)

In (4) we introduced the cutoff factor 1 — cos(e — €')7. Here the superior bar denotes
averaging over the Fermi surface. The expression for b corresponds to the Born ap-
proximation in V. (If this approximation breaks down, but the scattering is deter-
mined by a single partial channel, we can establish a correlation between #<1/2 and
the corresponding phase of the electron scattering.®) At

Qpr > 1, Qp = 2nbT (6)

the amplitude A, is exponentially small, A_,, ~exp( — Q;7/2), and the coherent
tunneling channel in (3) can generally be ignored. The dynamics of a two-level system
in this case is determined by the last term in (3) and is descibed by the probability for
the transition from well 1 to well 2 with excitation of the system [see Eq. (5.8) in I]:

AYT) 9, LA HQ+ 2D g

WET) =}
€D = =g VT Tara I (4 + 9,/207)

7N

This relation is valid for any value of the parameters if
(. £)y e > AolT). (8)

Determining from (7) the quantity 7' = W, we find that Q7> 1 and that A_, is
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indeed exponentially small. The last assertion is always valid, even when &> A, > T, if
inequality (8) holds.

The term with A, in (3) and the dissipation-free transition become important
only when (Q,,6) ... <A,. Since the lifetime of the particle in a separate well in this
case is ~Ag,, we find from (4) a self-consistent equation for determining A,

Bew = Dol 7T /@ sinh 7T /8,017 Ay (T=0) A4 = Ag(Bg/w)P/t 72 (9)

The overlap integral (X) has been erroneously linked to A,(7)/A, and therefore it
was assumed to increase with increasing 7, in accordance with (5). According to (4)
and (9), the actual behavior has nothing in common with this assertion.

3. The inverse relaxation time of a two-level system, 7, is determined, if condition
(8) holds in the limit A_; —0, by probability (7), to which it is related by the simple
relation

y = t+exp(-¢/THWE, T) (10)

To determine y in the region where inequality (8) is violated, we assume that b<«l,
leaving b In w/A arbitrary. We introduce an intermediate frequency A, < @ <w, such
that b In co/ A, <1 We replace the cutoff frequency v; in (1) by @ and 11kew1se in the
interaction V in(3).f7,Q., & <, and if the relationship between these parameters
and A, is arbitrary, the amplitude
A p = Aoexp{ - bln®/~} = 4,

retains the value it has in (9). Here the interaction ¥ in (3) can be incorporated in
accordance with perturbation theory, and the problem described by Hamiltonian (3)
is isomorphic to the problem of tunneling relaxation of a two-level system as a result of
interaction with the phonons, which was analyzed in Ref. 9. Using the results of Ref. 9
[see Egs. (4.10) and (4.11)], we can immediately write the result in the form

~ ~ N
= A Q/ (€ +9%) e=(al + ), (1)
V=P 2 01V, IP8(E, ~Epy — €)' (1+ exp(—¢/T) =i0e/Tcotherar.
n

Since the ranges of application of Egs. (10) and (11) overlap when b <1 over a broad
interval of the parameters @ (;,£) .. > A,, We can write a general expression
which is valid for the entire range of variation of 7, {,, and §

Y& T) = (1+exp(—/P)We T), e =(A2,,(T) + EHY? (12)

At &, T<A, [T +b+ie/2rT) "~ (e/mT)* = (A, /7T)* in an asymptotic man-
ner and the square amplitude A,(T) is replaced by AZ in the expression for W(e,T)
[expression (7)].

Over a broad range where (8) holds, expression (12) remains valid for an arbi-
trary value of b upon transformation to (7) and (10). Furthermore, at b= 1/2
expression (12) leads to a T- and e-independent result:
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=T = A2
Y€ T) = /2A* , A, =4 /w

indicating that the results are exact (see the analytical study by Guinea et al.'®).
Expression (12) is thus an approximate expression only for the intermediate values of
b (b5 1/2) if condition (8) is violated.

Expressions (7) and (12) differ appreciably from the results obtained previously
for the relaxation rate of a two-level system in metallic glasses,® which are valid only
for €> (), and only if the electron polaron effect is ignored.

4. For a superconductor, expressions (7) and (12) can be generalized directly by
the BCS theory. We present here only the results with clear physical nature.

In the limit 7—0, the infrared divergence characteristic of the electron polaron
effect is now cut off below at the scale (A, ,2A, ) .., Where A_ is the superconducting
gap at 77=0. If A_ >24,, A, (0) has the same value of A, as in (9) and the
transitions give rise to free production of electron-hole pairs (e, = A, >24.) and
account for the fact that all results found for a normal metal are the same.

If 2A.>A,, the cutoff occurs at 2A,. We can now write
~
Bo(T) = 8o(TT 2ADmax [wY? ;  8,,,(0) = A% = A Jwf >4 . (13)

The freezing-out of the normal excitations takes effect when € <2A.(T) and at the
same time at 7 < A, (T). We assume T'R €. The quantity y(€,T) will then be the same
as in (7) and (12) if A,(7) is understood to mean (13) and Q% is substituted for Q.
(see Refs. 11 and 12):

Q6 = 20, (1+exp(A(T) T (14)

This result effectively corresponds to a reduction of the parameter b and the applica-
bility of the perturbation theory for ¥ in (3). The expression for Q¢ as it appears in
(14) is correct above and below 7,.

5. The damping of low-frequency sound, @, in glasses, for which the dominant
mechanism is the relaxation of a two-level system, is characterized by the absorption

FIG. 1.
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factor T, which can be written in general form® (see also Ref. 13)

w0/7(€' T)
1 +[wo/7(€’ T)]2

The averaging in (15) over the parameters of a two-level system is carried out with the
distribution function P(&, In A,) which is usually assumed to be constant. That the
distribution in £ is uniform is beyond doubt. We see from (15) that all two-level
systems wtih £ ~e~T(A, <T; see the discussion below) contribute to the absorption.
With regard to the P independence of In A,, there is, in our view, in general, no
physical basis for such an assumption. We assume that the function P(In A,) has a
smooth peak near a typical tunneling amplitude J,

I ~ [ (§/€)* (Tcosh2¢/27) ! P(&, InAg)dEdInA, - (15)

P=Py(1 — aln? AO/JO), a <1 (16)

The extremal value of the integrand in (15), @/y ~ 1, determines the characteris-
tic value of A¢T, near which the integral in (15) accumulates. Using (7) and (12),
along with the parameters (13) and (14), we find the approximate result

@Y ) ~ woT(1+exp(A(T)/T)) (w /T, 2A),, . )2 /2B, (17)

At T~1K and o,~ 10°-10° Hz we have AZ" ~ 10™3-107* K in the normal state. Such
values of A{™ allow us to assume that AST is found in the interval to the left of J,,. It
follows from (16) and (17) that in a normal metallic phase we have AST ~ 7'/ ~? and
the factor I' decreases slowly with decreasing 7. Transition to the superconducting
state is accompanied by an exponential increase of AX ~eA“?7, As a result, after going
through a minimum, T increases rapidly as T is lowered, which does not occur if the
magnetic field destroys the superconductivity (see Fig. 1). This situation was observed
experimentally in Refs. 1 and 2. Rejection of the assumption P = const does not
change the results for the heat capacity.
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