Polarization domains in nonlinear optics
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Stable (ground) polarization states have been found in the case of the propagation
of electromagnetic waves in opposite directions in a mirror-symmetry medium
with a cubic nonlinearity along a fourfold axis if the optical Kerr self-effect is
ignored. The evolution of an arbitrary initial polarization gives rise to a “domain
structure.” Explicit solutions describing domain walls are found.

We consider quasimonochromatic electromagnetic waves with characteristic fre-
quencies @ * and complex envelopes E* (x,7) which are propagating in opposite di-
rections at group velocities v, in a medium with a cubic nonlinearity which is either
anisotropic (along a fourfold axis) or isotropic. The mutual changes in the polariza-
tions of these waves constitute the strongest nonlinear effect. The static problem of the
spatial evolution of polarizations was discussed in Refs. 1-3. In the present letter we
show that when the Kerr self-effect of the waves is ignored, the problem can be solved
exactly in a general time-dependent formulation. The problem reduces in this case to
an integrable system of an anisotropic chiral field on group O(3). This circumstance
means, in particular, that the asymptotic behavior of an arbitrary initial state of the
polarizations will have a “domain” structure, in which the domains are regions with
different stable static states which realize minima of the Hamiltonian. There will also
be domain walls, whose size and velocity will depend on the amplitudes of the incident
waves and the nonlinear interaction constants. These walls are regions of a switching
of polarizations. It is clear that this domain structure will be preserved if we incorpo-
rate a damping of waves or other nonlinearities which do not disrupt the degeneracy of
a discrete set of minima of the Hamiltonian.

Assuming E* (x,t) = E ;F j+ E ;" k, we write the general phenomenological in-
teraction Hamiltonian as H,, = H " + H ~— + H, where
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After we transform to real variables which are quadratic in the fields,
Sy =|E*?, §¢ :(E;*E; +c.c., z'E;*E; +c.c., 15; |2 ~|EZi %), (H
the system of equations of motion, d,E* +v, d,E* =ibH,,/SE* *, takes the
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where 9, =d, +v.d,, d,= —d, +v_d,, J, =diag(—F,5,~F5) and
J = diag( — 5 — ¥4¥3 — ¥&7>). The interactions with the constants 5 # and 7, are
inconsequential: they simply introduce a nonlinear correction to the isotropic part of
the refractive index. They are automatically eliminated in terms of variables (1). In
the case of an isotropic medium we would have

% = 35: Y2 T T3 7 Vs (3)

At this point we restrict the discussion to situations in which we can ignore the
optical Kerr self-effect of the waves E * and E ~ in comparison with their interaction;
i.e., we assume |E " ?|E TP [|> [E* |*|J . || Such a situation arises when the fre-
quency difference @* — ™ is close to a natural frequency of the medium.* In this
case, system (2) simplifies, becoming the well-known model of an anisotropic chiral
field on group O(3) (a model which is integrable by the method of the inverse prob-
lem) >

E)ES+ = §*XJS, —anS“ = 8§ XJS*, J=diag{/,, /1, J3) 4)

Static states correspond to constant vectors S+ and § ~, which are directed along one
of the principal axes of the tensor J. We first assume J 2 £J ; with a#b. Analysis of
the dispersion relation for small oscillations near each of these equilibrium states
shows that the only stable state is that in which both of the vectors S+ and S~ are
oriented along principal axis ¢, of the tensor J, with the smallest square eigenvalue
(J2 <J%,J?). These vectors are parallel if J,J. >0 or antiparallel if the product J,J,
is negative. Parallel vectors S+ correspond to identical polarizations of the waves
E*, while antiparallel vectors correspond to orthogonal polarizatins; ie.,
(E ** E ~) = 0. Table I shows pairs of stable polarization states of the field £ * ,E ~ for
various relations between the interaction constants. The waves tend to arrive at these
states, which are the most favorable states from the energy standpoint; i.e., the waves

TABLE I

1i<Js;, J B<hi R

|
!
Jods >0 JyJy <O NJJs >0 |Jidy <0 |JJy >0 | JJ, <0

I // /\ M| | T T T |
n |\ \ \/ ()| l l | —

The plus and minus signs specify whether the circular polarization is positive or negative; the bars show the
orientation of the linear polarization in the (y,z) plane; the polarizations are given in the order E*, E ~.
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tend to undergo a self-polarization. The situation here is completely analogous to the
theory of ferromagnetism, in which spins tend to become aligned along the most
favorable anisotropy axis. Also as in ferromagnets, there are domain walls here, which
describe a transition from one stable state to another. In the case
J2>J35>J3,.JJ,>0, for example, this wall is described by

S* = (asin¢ [coshX, a cosp /cosh X, a tanh X),

S” =(b sin'y /coshX, bcosy /coshX, b tanh X ), (5)
pbv +gav {ga-pb) v v
X = * X — I—Xo |,
v, v (v,qatv_pb)

where x,, a, and b are arbitrary constants; and the constant parameters p, q, ¢, and ¢
are related by the three relations

ptq=(; tJ)sin(p-¥), p-q=(,~Ji)sin(p+y), (6)
J3=J, cosypcos Y +J; sinpsin .

Consequently, for given wave intensities and a given value of x,, there is a single-
parameter family of solutions in the form of a domain wall.

System (4) and the Landau-Lifshitz model describing a biaxial ferromagnet are
integrated with the help of the same linear spectral problem (cf. Refs. 5 and 7).
Accordingly, all the results found for magnetic materials can be transferred without
difficulty to our case. For example, we can write exact N-soliton and finite-band peri-
odic solutions. We can study the interaction of domain walls with packets of polariza-
tion waves (analogs of spin waves), etc. The stability of the polarization domains is of
a topological nature, and the radiation power levels and sample dimensions required
for observing them are accessible experimentally.

Let us examine in more detail the structure of domains in isotropic media. In this
case there is a degeneracy of the eigenvalues of the tensor Jin (3). If JT =J3>J7,
the ground states of Hamiltonian H are identical positive or negative circular polariza-
tions of the fields £+ . A domain wall couples states with opposite circular polariza-
tions (Fig. 1). In the interior of a wall, the polarizations of both waves are elliptical,
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FIG. 1. Polarization ellipses of the waves E* and £~ in a domain wall in an isotropic medium.
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and at the very center of the wall they are linear. The ratios of the minor (55 ) and
major (b {) axes of the polarization ellipse are the same for the two waves and are
given by

bi’ lE+l2 __(E-‘Z

" = tanh ‘\/7374(]E+lz+lE_|2)('x—

2
————m—— - v (7
b} G )

(For simplicity, we have set v, = 1 here.) Over the entire thickness of a domain wall
the polarization ellipses of the two waves retain the same orientation. Their major axes

are separated from each other by an angle @ = 4 (1/2)arctan[2\757,/|7,_74l]. The
orientation of the polarization ellipse of one of the fields is arbitrary, as it should be in
an isotropic medium. The velocity of a domain wall in this case is determined com-
pletely by the intensities of waves E *,E ~; it vanishes if these intensities are equal.

If the opposite inequality holds, J} = J3 <J3, the Hamiltonian is infinitely de-
generate, the fields ET are identically linearly polarized in the ground state, and the
orientation of the polarization in the (y,z) plane is arbitrary. In the theory of ferro-
magnetism, the first case corresponds to an easy-axis anisotropy, while the second
corresponds to an easy-plane anisotropy. The case J, =J, = J; (which leads to the
model of a principal chiral field®) is even more degenerate: An arbitrary identical
polarization of waves E* is of neutral stability. This case occurs in a plasma if
ot >a,.
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