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It is suggested that the effect of unfilled d states on the electronic structure of group
V semimetals and IV-VI semiconductors be taken into account. Comparison with
the experimental data available on the carrier characteristics yields the constants
for s—p and p—d hybridization in antimony and bismuth.

A developing theory is making it possible to describe IV-VI semiconductors' and
group V semimetals? by a common approach, based on the Peierls idea of the instabil-
ity of a simple cubic lattice along with the strong-coupling approximation. The initial
basis here consists of atomic p states. Parameters of various magnitudes arise in this
theory. The most important among them characterize a cubic regular phase. These
characteristics are the overlap integrals of nearest neighbors in the simple cubic lattice.
They are on the order of 3.5 eV. Quantities of the next order of magnitude (0.5 V) in
the group V semimetals arise because of the small difference between their spatial
lattice and a simple cubic lattice. In IV-VI semiconductors, the corresponding quanti-
ties are a result of the difference between the group I'V atom and the group VI atom.
The spin-orbit interaction, which is important in heavy atoms, is also taken into ac-
count.

These quantities by themselves, however, are not sufficient for an adequate de-
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scription of these materials. For example, the random degeneracy of electron terms at
certain points in the Brillouin zone is not lifted. Furthermore, the high accuracy
required by an experiment is not achieved because of the pronounced anisotropy of the
effective masses in certain directions. For this reason, overlap integrals in the second
and even third coordination spheres are taken into consideration. For bismuth, for
example, all the available experimental information on the electrons and holes and also
optical data have been described within an error no greater than 10%. An attempt to
implement the same program for antimony, however, ran into a fundamental diffi-
culty: A hole extremum appeared in the I'X direction above the Fermi level. This hole
is not seen experimentally.

We took into account the circumstance that pseudopotential calculations of the
electronic structure of semimetals (see Ref. 3, for example), although not accurate
enough to satisfy the experimentalists, do give a qualitatively correct picture. It is easy
to see that the pseudopotential method, in contrast with the approximation which we
use, incorporates in a hidden form all of the atomic states. Accordingly, the first step
in the correct direction is to supplement the p states with the closest-lying other atomic
terms. The one attempt which has been made in this direction was that by Vogl ef al.*
They were concerned with semiconductors having the zinc blende and diamond struc-
tures; in addition to filled states, they considered a higher-lying state, which was
spherically symmetric (apparently for simplicity).

We begin by taking into account a filled s state which lies 7 eV deeper than the p
term, according to atomic calculations.” In the strong-coupling approximation, its
dispersion is described by the following expression, which takes account of Peierls
doubling:

€ =€t (£2+ uht?,

where § =&, (cosk, +cosk, +cosk,) and u, =u, (sink, +sink, +sink,).
We are using coordinates associated with a simple cubic lattice with lattice constants
a = 1. The overlap integral of the s functions with nearest neighbors, £,,, and the
change in this integral due to Peierls doubling, u,,, can be estimated by working from
pseudopotential calculations® and by treating the two deepest zones as arising from an
atomic s term. For bismuth at the point L = 7(1,1,1), for example, the corresponding
splitting 2u,, of the lower valence levels leads to the value uy, = 0.226 eV, while the
splitting at X = #(1,0,0) gives us &,, = 0.639 eV. Comparing these values with those
(ug, =0.219 eV, £&,, = 0.693 eV) given by the points 7= 7(1,1,1) and T" = (0,0,0),
where the splittings are three times larger, we see that the interpretation of the pseudo-
potential results with the help of the strong-coupling approximation is noncontradic-
tory.

The hybridization of the s and p states is described by the matrix element

Vsp =(s(0,0,0)| Vip,(1,0,0),
where V is the crystal potential, and the numbers in parentheses are the coordinates of
the nearest atoms. In second-order perturbation theory we find the contribution of s—p

hybridization to the matrix element of the effective Hamiltonian constructed in the
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basis of p states:

hxy =N sinkx sinky ,
where
My =4V5p ! Cop = €o)- (H

If we restrict the analysis to exclusively p states, we could find a matrix element of the
same symmetry’ in only the second coordination sphere; it is denoted by w in Ref. 1
and 77, in Ref. 2 (however, the corresponding diagonal element 4., vanishes).

What is the effect of the nearest d states? In group V elements, these states are not
filled, and for this reason they were ignored in the atomic calculations of Ref. 5. Their
presence is seen in pseudopotential calculations,® where higher-lying states are visible.
Because of the fivefold degeneracy, however, an analysis like the s-term analysis be-
comes quite complicated here. We accordingly restrict the analysis to p—¢ hybridiza-
tion. In a cubic field, the quintet of d states is known to split into a triplet, which
transforms as the products xy, yz, zx, and a doublet x’~?%, 3z—#. The matrix element
of the crystal potential between the d function of the triplet and the p function of the
nearest neighbors is
Vey =32 (0,0,0)(Vp, (0, 1,0)).

X

The matrix element

V,,zﬂyZ,x=<(x2 - (0,0,0)| Vip, (1,0,0)),
Va2 2 =((32* -r*)(0,0,0)| Vip, (1,0,0)),
Vs,2 _rz,z=((3zz ~-r)(0,0,0)1V|p, (0,0,1))

are related by

v 1
— V. 2 2 T V3z7-,,-2

x“—-y°, x 5 ,x?

1
sz 2 - —V

-yix 7 3z -2 x

v

3z2-r% 2 ’

which can be found if their left sides are transformed by the rotations y—z, z— —y
and x -y —z—x. The hybridization of the doublet with p states in the nearest-neighbor
approximation can thus be described by a single constant, e.g., V5. _ ., in terms of
which the others are expressed:

V. 2 =——V

3zz~r,x 2 322-—r2,z’ x y,x— 2 3z¢—-r%, 2"

The matrix elements of the effective Hamiltonian, which incorporate the hybridi-
zation of the p states with the s and d terms, are found in second-order perturbation
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theory to be

hey =g, +n(3) Ysin® k +0() (sin® k, +sin’ k,) ,

)
4
= () — 1 () g :
hxy (nsp +77dp ) Nip )sink sin ky

where

né;))=4V32¢y,x/(€0p-eod)’ ’7%2;324V§z2~r2,z /(e Heod) (2)

op
and €, €y, and €,, are the energies of the atomic s, p, and ¢ terms.

The values of the constants 7,,, 7%’ and 3’ have been found numerically
through a comparison with the available experimental characteristics of electrons and
holes in semimetals. They turn out to be 0.041, — 0.095, and — 0.123 eV, respective-
ly, for bismuth, and 0.283, — 0.364, and — 0.365 eV, respectively, for antimony (the
details of this study will be published separately). These numbers have the appropriate
sign [see Egs. (1) and (2)], and they are also of the correct order of magnitude: The
matrix elements of the crystal potential are on the order of 1 eV. We note in conclu-
sion that incorporating the hybridization of the s, p, and d terms has made it possible
to restrict the analysis to simply the nearest neighbors, without a loss of accuracy in
the description of the electron characteristics (the number of parameters in the effec-
tive Hamiltonian decreases). This approach has also eliminated the difficulty regard-
ing antimony, which we mentioned earlier.
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