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Equations describing the behavior of solitons (magnetic vortices) in multilayer
Josephson systems are derived. If the velocities of solitons propagating in two
adjacent junctions differ only slightly, they will capture each other when they come
close together and thereafter propagate at the same velocity.

Recent years have seen the development and study of Josephson superlattices, i.e.,
systems consisting of alternating layers S—-N-S—-N~... or S—I-S—I-..., where S is a su-
perconductor, N a normal metal, and 7 an insulator.! From another standpoint, a long
S—I-S Josephson junction (L3> A;, where L is the length of the junction, and A, is the
Josephson penetration depth) is a convenient system for studying solitons or “flux-
ons,” as they are called in this case. At certain currents and voltages ¥, moving
fluxons and/or antifluxons form in such junctions. From the I(¥) curve one can draw
definite conclusions regarding the dynamics and interaction of fluxons (or antiflux-
ons).?

The interaction of fluxons in multilayer systems is an interesting topic. Most of
the previous theoretical work on this topic has dealt with the emission from multilayer
systems.** At the same time, such systems open up some new opportunities for study-
ing the interaction of fluxons, since by varying the parameters of the system and the
external conditions (the magnetic field and the currents through junctions) one can
control the characteristics of the fluxons in different junctions (their velocities, the
period of the vortex lattice, etc.) In the present letter we derive equations describing
the behavior of solitons in multilayer systems. We analyze several effects in such
systems.

Let us examine an S,—/-S,—/-... system (Fig. 1). Assuming a local coupling of
the current j, in the plane of the »- th S layer with a momentum pg,

jL=bpg.  Ps=V,x—(2/0)A, ()

we find the following expression for the magnetic field H(z) in the n-th S layer from
the London equation:

1T sinh(z/4) cosh(z/A)
H ()=—— | (h,~h Sinh(z/4) -y g ey SOSMEA) 2)
22 2 L( n ) sinh(a, /A) LPRL cosh(a,/A) (
where b ' = 8med °/c? A is the London penetration depth, and /4, is the magnetic

field in the n-th I layer (Fig. 1). Making use of the continuity of 4, we can write the
equation j, (g, +0) —j (a, —0) = bVl(p”, for the jump in the current at this layer,
where ¢, is the phase difference at this / layer. Using Maxwell’s equation
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we can express j, (a, + 0) in terms of the fields H, and H,, , ,, ignoring the fields E,
in the S layers. We find

~(c/e N In, XV, 0,1

=, ., —hn) cotha,,,~,,, *+h )tanha, ~t,~h _ ) cotha,

—~, th,_, ) tanhg,, (4)

where @, = a, /4. We now take the divergence of Eq. (3) and integrate it over the
volume shown by the dashed box in Fig. 1. Using the relationship between j, and H
described by Eq. (3), and using expression (2) for H, we find the equation

e, nSing, +(0,/2)8, ~(c/4m) [n, x T ]h, + (¢/8end, )G, =0. (5)

The first two terms here describe the Josephson and dissipative currents through the
n-th I layer, of thickness d,, ; the last term describes the displacement current; and n, is
the unit vector along the z axis. Equations (4) and (5) describe the electrodynamics of
this system. Let us examine some specific examples.

a) System of identical junctions with thin (a, =a<A) § layers (a layered super-
conductor). From (4) we find for h = (0,4,0) the relation — (27b /ac)p, = h,, in
this case (where 4, = d°h /0z*). In the steady state, this equation, along with (5),
describes a vortex (or a vortex lattice). Far from the center of an isolated vortex,
where sing=~¢@, we find «%h, +h, =0 from these equations (here
k% = 16meaj A /c*=al /A2 <1). This equation describes an anisotropic vortex in a
layered superconductor.’

b) System of junctions with thick (a,>A4) S layers. From (4) we find
by = QEN[C) [0, ¥ Yy y Pray F Vnoy Ppa ) (6)
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A FIG. 2.

where 7, = exp( — 2a, /A) <1, and the prime means differentiation with respect to x.
Substituting (6) into (5), we find, in the steady state,

sin‘pn—xjyn[ (p’;' +7n+1‘Pr:1+7n—1‘p'n’—1]=0' (7

This equation describes a vortex lattice in weakly interacting Josephson junctions. By
varying the coupling between junctions (by varying the temperature or the thickness
of the S layers) and the structure of the system (which may be periodic or aperiodic),
one can produce various types of vortex lattices and thus change the dependence of the
magnetization on the external magnetic field. Leaving this question for future study,
we move on to the next case.

¢) System comprised of two junctions (Fig. 2). In the case of a single junction,
this geometry is used to study the motion of solitons.” It is assumed that the dimension
along the y axis is small in comparison with 4,. In this case # and ¢ in (5) depend
only weakly on y, and we can integrate (5) over y from — L,/2to L,/2. We express
the field components 4, ( - L, /2) which arise in this process in terms of the currents
I, integrating (3) over the area of each § layer. Assuming that the coupling between
junctions is weak, as in the preceding case, we find the equation

: - I e " . -2 ¥ -
S0, ) "N )8y @) FY O] (@ @) 0y 410y YOIy i) Ty, (B

where (/@) a3y = (/). )12y /28, @;;, =8em(j.d/€),,,, and 71,5 = F U/
Je iy (L L)~ !, If the system is in a magnetic field (0,4,0), the boundary condition
on (8) is ¢ {5, = (4ed /c)h.

For simplicity, we consider two identical junctions with different “currents” 7,
and 77,, at which fluxons propagate in the junctions. If 77,77, >0 (i.e., if the currents I,
and 7, are flowing in the same direction), the fluxons in junctions 1 and 2 will move in
different directions, and we can study a collision between them. If, on the other hand,
the condition 7,7, <0 holds (I, and I, are flowing in different directions), the fluxons
will move in the same direction, at velocities v, and v, determined by the currents 7,
and 77,. It turns out that, depending on the value of the quantity 7_=7%, — 7, (we
note that we have 5_ ~1;), the relative velocity v_ = v, — v, can take on different
values. This conclusion follows from the equation for the distance between fluxons,
x_=£&A,, which we write under the assumption that v, ,, is small in comparison with
¢y = wyl,; (where w, = @, = w,) when the width of a fluxon does not depend on its
velocity:
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where F(§) = dxf"(x) f"(x + &) and f(x) = 4 arctan (exp x). It follows from
(9) that in the case 7_>7, =8ayy /7 the velocity is v_ = x__ = 0; i.e., the fluxons are
moving as a bundle. In the case _ > 7, =0.79y, the velocity v_ is nonzero, and in a
long junction it is equal to v__ = — 5_wy7m/4a most of the time. In the current inter-
val 9, <7 <7,, two types of motion are possible. The voltages across the junctions, V,
are related to the average velocity of the motion: 2eV',,, = 7v,(,, /L. Consequently,
we can draw conclusions from these results regarding, for example, the dependence of
V_=V,—V,=av_/eL on n_. This dependence is sketched in Fig. 3. In the limit
7_ -7, we have ¥~y In m; as 77_ increases, the V_ (9 _) depen-

dence rapidly becomes the linear dependence eV_ = 7|5 _|wyl, |4eal. In the equa-
tions written above we have assumed ¥ <@ <.

There are other effects that occur in these systems. For example, if we place a
system (Fig. 2) with different junctions in a magnetic field, a vortex lattice may arise
in one of the junctions, and a fluxon in another junction will move in the periodic
potential set up by the vortex lattice.®
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