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A study is made of the kinetics of the loss at trapping centers of particles which are
undergoing a random walk in subthreshold percolation systems. Asymptotic
expressions are derived for the survival probability. These expressions determine
the kinetics of the disappearance of a significant fraction of the particles. The effect
of a uniform external field is studied.

Clustering, the formation of fractal systems, and other diffusion processes have
recently attracted increased interest in the physics of disordered systems. One of the
few exact results which has been established in this field is that the mean-field depen-
dence

cft) = exp( —-knt) (1)

for the survival probability c(¢) of a particle A which is diffusing in a d-dimensional
medium with immobile trapping centers B (k is the “observable” rate constant of the
reaction 4 + B— B, n is the density of trapping centers, and ¢ is the time) is replaced as
t— o by the asymptotic behavior'?

Ineft) ~ — plid+ Z/td/{d+ 2/, 2)
which is related in a definite way to the tail of the state density for an electron in a
disordered system.?

In this paper we study the behavior of the type in (2) for two percolation systems
for which, in the absence of a reaction, particles 4 are localized in finite volumes. An
important point is that, in contrast with most fluctuation effects, the results which are
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found describe not only the remote asymptotic behavior but also the kinetics of the
conversion of a large fraction of the particles of species 4 when the parameter values of
the problem satisfy a certain relation. In other words, the results derived here can
easily be observed experimentally. We study the effect of an external field E on the
kinetics of the reaction of charged particles 4 with neutral particles B.

We consider particles 4, each with a charge e, which are diffusing through a
lattice whose sites can be occupied by immobile neutral particles B, which are imper-
meable for particles 4. This occupation of sites by the immobile neutral particles B
occurs with a probability p in an independent manner for each site. If 1 — p is below
the percolation threshold, each 4 localizes in a closed, singly connected cavity. When
A and B meet, there is a small probability for an annihilation of 4 (a slow annihilation
reaction). The external field E is uniform and parallel to the x axis. For the density of
particles 4 within a cavity () we can write the following equation in the continuum
limit:

ap(r, t) D dpfr, t)

= DAp(,t) + — ——m, 3
ot P t) i ox )

where D is the Qiﬂ'usion coefficient, I = k T(Ee) ™!, kp is the Boltzmann constant, 7’
is the temperature, and A is a d-dimensional Laplacian. Here we have the boundary
condition

(P=Fhp)l,cp (4)

where ® is the flux density of p across the Q-1 boundary (which is not necessarily
singly connected); the — ( + ) corresponds to the exterior (interior) part of I
h=k,S = ', S, is the surface area of a d-dimensional sphere whose radius a is equal to
the reaction radius; and k, is the rate constant of the reaction. We also have uniform
boundary conditions, p(r,)|,_o = po within Q. If E=0 and

k, < S,DR*, (5)

where R is the maximum diameter of (), the survival probability for a particle 4 in £} is

cqft) = exp(—=At) (6)

where A = k,S(S,¥) "', St is the total area of ', and ¥ is the volume of (}. The
probability for the formation/ of a cavity is* (V)= exp( — nV), where
n=nlIn(1 —p), and 7 is the density of lattice sites. At large values of ¢, the survival
probability for a particle 4 in the system is dominated by spherical cavitics with a
radius

R, = [kt /(whn)) @1/ @)

where w, is the volume of a d-dimensional unit sphere. When the survival probability
is averaged over different cavities, the optimal-fluctuation method'~ gives us, corre-

spondingly,
lﬂC(t) ~ — wd-(dh 1)/{d+1) n 1/(d+ lj(kpt}d/(d+ 1) (8)
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The corresponding functional dependence for d = 1 was derived in Refs. 5 and 6.
Intermediate asymptotitz result (8) gives a correct description of the reaction kinetics
as long as (5) holds for R, from (7). When the opposite inequality holds (as 1> « ),
the smallest eigenvalue of the diffusion operator is 4 = DR ~%, so we find (2).

An important point is that at small values of X, most of the reactant is lost
according to (8). This behavior is correct in a certain time interval ¢, €7 <1,; for the
corresponding extents of reaction with d =3 we have Inc(¢;) = — (na*)~* and
Inc(t,) = —na*(Da/k,)’. The time for a real experiment, 7= (k,n)~'= (a%/
D)Y(Da/k,)(1/na’), would be greater than 107> s in a dense system (na’=1) if the
condition Da/k, > 10° holds in a liquid (D=10"> c¢m’/s) or if the condition Da/
k, >10 holds in a solid (D=107"° cm®/s). Consequently, if the typical reaction time
exceeds 1077 s in these systems, only behavior (8) will be observable.

In an electric field £ #0 at a large value of z, at which the relation R, >/ holds,
the optimal cavity becomes a cavity which is stretched out along x, and A becomes
independent of the dimensions of the cavity. As a result, there is a change in the
asymptotic behavior after a long time. For strong fields (small values of kp ), under
the condition k, €S, DEe(kp T)~!, we have the following result as — oo:

Incft) = — kae(SakBT)_lt.

In the opposite limit, k, >, DEe(k, T) ™', we have the following result as /- oo:
Inc(t) =~ — D(Ee)*(k,T) .

Let us consider the second case, in which the particles of species B, which are
blocking the diffusion of 4, are neutral with respect to the reaction, and the vanishing
of reactant 4 occurs in an encounter with particles of a third species: trapping centers
C, which are distributed in a random way among the sites which are not occupied by
particles B. In the limit 7 — o, c(#) tends toward a finite limit ¢, , which is equal to the
fraction of localization cavities which contain not a single trapping center C. The
relaxation of ¢(¢) toward ¢ is determined by the kinetics of the loss of particles A4
which are diffusing in closed cavities with a random number of trapping centers .
The density 4 in each of the cavities obeys (3) with a boundary condition of the type
in (4), in which we have # =0 at the boundary of the cavity and & = k,S, at the
reaction surface of the trapping centers. Under the conditions R >a, Dt>R %, N<R *7,
E=0, and d=3, relation (6) with 1 =£kN(w,R?)"" and k = 4wDak, (4wDa
+ k,) ! holds. The average survival probability in the system is

)= = Dnje N Pryjay,
0

N=o

where &, (N) is a Poisson distribution with a mean value of n, ¥, and n, is the
density of trapping centers C. Summing over N, and subtracting c_,, we find

exp vnVexp (— }—c{;)) - 1. @(V/. (9

eft) —c, =[dv
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At small values of ¢, expression (9) for any normalized &7 (V) to unity leads to (1). In
the limit - co, we find by the method of steepest descent

Infe(t) — ¢ 1~ — 2Nk(n+n_ ]t

In the case E 0, the long-term relaxation of ¢(¢) is determined by cylindrical
cavities which are stretched out along x and which have a single trapping center at one
base of the cylinder. In this case, calculations by the method of steepest descent yield
the power law

naks T ( k(Ee;ﬂ
Ee Lna* (kT)2|

We wish to thank A. I. Onipko for pointing out the existence of an intermediate
asymptotic behavior of the type in (8) in one-dimensional systems; we also thank

O. F. Ivanov for a useful discussion.

Infeft) — ¢ ] =—

'V. Ya. Balagurov and V. T. Vaks, Zh. Eksp. Teor. Fiz. 65, 1939 (1973) [Sov. Phys. JETP 38, 968 (1973)].
?Ya. B. Zeldovich and A. A. Ovchinnikov, Chem. Phys. 28, 215 (1978).

1. M. Lifshits, S. A. Gradeskul, and A. A. Pastur, Vvedenie v teoriyn neuporyadochennykh sistem (Intro-
duction to the Theory of Disordered Systems), Nauka, Moscow, 1979.

*F. W. Essam, Rept. Prog. Phys. 43, 833 (1980).

SA. S. Prostnev, M. A. Kozhushner, and B. R. Shub, Khim. Fizika 5, 85 (1986).

SA. L. Onipko, Khim. Fizika, 1987 (in press).

Translated by Dave Parsons





