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The probability for the flipping of a spin s> 1 (with an easy-axis anisotropy) due to
a transverse field or an interaction with phonons is calculated. The flipping is
interpreted as a tunneling through a magnetic-anisotropy barrier. The behavior as
a function of the temperature and the longitudinal field is derived.

We assume that the spin Hamiltonian of a magnetic impurity in a nonmetallic
matrix is axisymmetric and corresponds to the easy-axis case: Vy(8) = Wf(s,/s),
where W is the height of the “barrier,” and f( — 1) =0 (Fig. 1). At a low tempera-
ture a spin can actually be in only two states: ¥_ (s, = ~s) and ¥ (s, =s). Transi-
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FIG. 1. Diagram of the tunneling tran-
sitions. In the case of a transverse field,
I only elastic transition 1I is possible; in
the case of an interaction with phon-
-5 I 5 Sz ons, the most favorable process is in-
[ elastic transition IV, with the maxi-

mum release of energy.

tions between these states are possible if there is a perturbation ¥V, e.g., a field Hl z
or an interaction with phonons of the reservoir. If ¥, is linear in s, , a transition
from ¢_ to ¥, requires that the spin go through all of the intermediate virtual states
in succession: —s— — s+ 1—----s. For a quadratic ¥;,, every other intermediate
state is entered: — s— — s+ 2—---. This “motion” along the coordinate s, is remi-
niscent of a tunneling through a potential barrier. In ordinary tunneling, different
spatial points are coupled by a kinetic-energy operator which contains gradients; in
our case, the possibility of a motion comes from the perturbation: As the perturbation
becomes weaker, the spin becomes “heavier” and thus less successful in tunneling. It is
legitimate to speak in terms of a tunneling if the number of intermediate states is large:
s> 1. If ¥, is small, the transition amplitude 4, _ can in principle be derived in a
high-order ( ~s) perturbation theory. A picture of the tunneling comes from the s> 1
asymptotic method for carrying out this calculation. Here we will consider three types
of Vi, : a weak transverse field H ., an interaction with an oscillator, and an interaction
with acoustic phonons.

1. Transverse field. The semiclassical spin is described by the Lagrangian

=1 (0) ) = _ p
L= -y ., 1LY scosf Wf(cos0) (H
(e.g., Ref. 1), where #i=1,s5, =scosf,ands, =s sinfe =, In the case of a trans-
verse field we would have V,,, = A_ssin 0 cos ¢, where A, =g, u.H,, g, is the trans-
verse g-factor, and y,, is the Bohr magneton. The simplified action is

oL
So =fa—;d¢=~sfcosﬁd¢=fgoa’(scos0), (2)
P

from which we see that we have ¢ =p, ; i.e., the precession angle is the canonical
momentum which is the conjugate of S,. To find the tunneling action, which deter-
mines the transparency, we switch to the imaginary time ¢ = ir and the imaginary
angle ¢ = 7 + . Eliminating ¢ with the help of the conservation law for the energy
E=V,+V,,, we find
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~ 5, (E) -
So_(E) =—IiSo(E) = [ Py (E, S, /’dsz (3)
s, (E) z

Vals,)— E )

2 &2
Ax\/s s?

D, (Es,) = i =arccosh < (4)
¥4

where 5, , are turning points. The semiclassical treatment is valid under the condition
dp, /ds, <ﬁfz; using (4), we then find the condition A, € W /s, which agrees with the
condition for the applicability of the perturbation theory. Setting H, =0 [i.e,
fix) =f( —x)], we can easily evaluate the integral in (3). For £ =0 we find

+

4, « exp(-go) = (csAx/W)”
(5)

1 1 ___KZ
¢ = (e/4)exp { In<~}a-)~)dx .

The result A, _ « (sA, /W) is obvious from the perturbation-theory standpoint; the
only nontrivial matter is determining the number ¢. We can also calculate the coeffi-
cient of the exponential function and take the field H, into account, but we will not
reproduce these calculations here.

The transparency is thus given by the customary expression, (3). The only unu-
sual aspect is the logarithmic, rather than square-root, dependence of the momentum
on the potential energy: p, ~In(W/sA). This is a general situation for problems in
which the action changes in discrete jumps 65> 1 (Ref. 2).

2, Interaction with an oscillator. We consider an oscillator Q with a mass m, and
a frequency w, which has a temperature 7, and which is interacting with a spin
through V,, = Uy(Q,5,)* (a runs over the values x,y; the interaction with Q, is
inconsequential). We take the longitudinal field H, into account and thus write
Vo(s) = —2sA, <0, A, = g uoH, (Fig. 1). Introducing the variables Q , = Qe ™',
and switching to the imaginary time ¢ = ir and the imaginary angles ¢ = i3, and
a' =ia, we find the Lagrangian of the system

0

L=L§°) + z:; [Qz(éz2 ~ w?)— Q%] — Uys? sin® @ cosh® (y + ) . (6)

To calculate  , _, the transition probability averaged over the initial states, we need
to find the total action S corresponding to a tunneling time of 1/27, with w, _ «e ™.
We assume

A, w T< Ws; 25< WT. (7)

We conclude from (7) that (1) the field perturbs the barrier relatively weakly, (2)
only the oscillator, not the spin, can be excited in the initial state, and (3) the tunnel-
ing process is favored over a purely activation process: w, _>e~ /D,

Putting Lagrangian (6) in dimensionless form, we find the characteristic values
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To~8/W, Qo~s(m,W)~"? and ¥ + a~In(Wm?/U}*s*). The temperature-field
dependence of w__ _ is determined, by virtue of (7), by the oscillatory part of the
action and can easily be separated out. As a result, we find

¥ ep (~e/T)  QT7< w)

w,_ x| g2 (8)
TAWimg <r (ﬁ) Qr* > w) ,
L

where T*=~max(7,A,/2) and €, = s(w — A, ). Structually, expression (8) is a result
of a perturbation theory. An important point is that under the condition A, <w the
transition is not a pure tunneling, and in the limit 7-0 it corresponds to a finite
activation energy €,. Why?

Lagrangian (6) leads to the conservation of the projection of the total angular
momentum of the system, M = s, + m,Q *c; consequently, upon a flipping of the spin,
angular momentum is transferred to the oscillator. If the spin tunnels through the
barrier at point s, (Fig. 1), the oscillator acquires an angular momentum
AM = —s—35, and an energy AE = — V,(s,). If AE>0, Ny= AE /o phonons can
be emitted; they will carry off an angular momentum ( — )N, If Ny = < |AM |, the
" remaining angular momentum A'M = AM + N, can be transferred only to existing
thermal phonons, each of which, through a flipping of its “spin” (from 1 to — 1),
carries off an angular momentum of — 2. The smallest necessary number of thermal
phonons is therefore N; =|A'M|/2, and their total energy is N, =1/
2[(s+ s,)@ + Vo(s,) 1. How do we find the optimum value of 5,7 The activation
probability exp( — N;w/T) increases with s,, while the amplitude 4, _ decreases
{since the necessary order of the perturbation theory, [ (s -+s,)/2], increases}. It is
easy to show that under condition (7) the first of these tendencies is dominant, so that
we have 5, = 5, the process takes path IV (Fig. 1), and we have Nyow = €,. If A, > o,
then we have N, = 0, since the amount of energy released is sufficient for a removal of
angular momentum only through emission, and the process becomes a pure tunneling.
The optimum value of s, remains equal to s up to A, ~ W /28> w, and the following
qualitative picture holds: In the initial state (y_) the oscillator is not excited, while in
the final state (y_.) its energy is AE, and its angular momentum is AM. The spin flips
at Q~Q,, so that we have w, _ o [y* (Qy)x . (Qo)|* o« (Qov moAE )41 oc AZ%, Sim-
ilar arguments lead to the behavior w, _ « (2T)*% at 2T>A,, o.

3. Acoustic phonons, We consider isotropic long-wave acoustic phonons which
are interacting with a spin through V,, = Uu; (0)S,Ss, where u,; (0) is the strain
energy at an impurity site, and U is the spin-strain interaction. The potential ¥, is
governed primarily by the longitudinal and “electric transverse™ quadrupole phonons
with j =2, m = + 2 (j is the total angular momentum of a phonon; m is its projec-
tion; and the terminology is the standard terminology in work with spherical phonons;
see Ref. 3). These contributions are comparable in magnitude. For simplicity, we will
retain only the longitudinal mode. We introduce Q" ,, = + Q, exp( + 2ia’,),
where Q |, is the amplitude of the jmk longitudinal phonon. The Lagrangian of the
system (in terms of the imaginary time and angles) is
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K2dk| p .
— 7 (0) "2 212y .2
L=L + [ 1—2—(Q§c(4ak— v2k?) — Q%)

/2 .
-V Uks® sin” 6 cosh (2(¢ +«, ))} , (9)

where p is the density, and v is the sound velocity. Putting (9) in dimensionless form,

we find Qo~s(Wpk3) "% and ¢+ a~1/2In[ (pW?/k])"?/Us*], vke~T*. As a
result, we find

w, o (USS/zT*a/ W2p1/2v5/2)2s (10)

The dependence on T and A, is always a power-law dependence here, since there are
phonons at arbitrarily low frequencies, and we can lower the activation energy without
bound, in the process giving up something in terms of the strength of the interaction
and the phase space. The optimum situation is reached at @ ~T*, and a functional
dependence (T*)* is generated.

In summary, in a weak longitudinal field H<H * = 2T /g 1o the time required for
the magnetization of a sample with impurities, al (H), and the time required for its
demagnetization, 7; (0), are equal to each other and are very strong functions of 7. At
HZH* the time r,(H) falls off sharply and is independent of T:
7, (H)/7(0) ~ (H*/H) ¢, The mechanism proposed here can describe the relaxation
of the angular momentum of not only a single impurity with s> 1 but also of single-
domain magnetic clusters.
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results.
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