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The distribution of the local state-density fluctuation in a one-dimensional
conductor is evaluated. In the case of a finite system with an open boundary, the
distribution has the shape of a logarithmically normal law. For an infinite or
shorted sample the fluctuations are described by the inverse Gaussian distribution.
The generalization of the results obtained here to the case of an insulator of
arbitrary dimensionality is discussed.

1. The problems associated with the statistical (mesoscopic) fluctuations in con-
ductors with a weak disorder have recently been discussed extensively in the literature.
The questions raised in connection with the distribution function of these fluctuations,
questions of considerable interest, have been discussed. It was shown in Refs. 1 and 2
that fluctuations in the resistance of one-dimensional conductors satisfy a logarithmi-
cally normal distribution law. Earlier, Wegner® obtained for an arbitrary dimensionali-
ty d = 2 + € an expression for the local state-density moments, which corresponds to
the logarithmically normal asymptotic behavior of the distribution function. In his
study Wegner® used a nonlinear o-model in a single-loop approximation. Logarithmi-
cally normal asymptotic behavior in the distribution of the conductivity fluctuations
and the total state density in the dimensionality (2 + €) was also observed in the
single-loop approximation.*

In the present letter we determine the exact distribution of the local state-density
fluctuations in the one-dimensional case, which is valid for the typical values and in
the region of distant tails.

2. At an energy E the standard definition of the state density at the point x is
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polE,x) = Z1Y,(x)P8(E - E,) =(xI8(E~H)x ), (1
u

where the subscript p specifies the exact eigenstates of the Hamiltonian H with the
wave function ¢, and energy E,. A more general quantity can be considered, and in
the case of an infinite or shorted sample must be considered. This quantity differs from
(1) in that the § functions are diffuse: the S-functions, are replaced, for example, by a
Lorentzian with a width 5. An average over the scale A can also be taken in the
coordinate space:

2 dy n
= [ = % |y (xty) [, (2)
P T AL BB e

Let us consider the case of a slight disorder Er> 1,/>A, where [ and 7 are respec-
tively the length and time of the mean free path of an electron, and 4 is the electron
wavelength. All the lengths below are measured in units of / and all energies are given
in the units of 77 '. We restrict the discussion here to the case 7 < 1. Without attempt-
ing to describe the situation for an arbitrary A, let us consider the fluctuations of two
quantities, p and p, which are given by Eq. (2) for A<A and for A<A«1 (Ref. 6),
respectively. The case A> 1 was considered in Ref. 7.

3. To evaluate the moments of the distribution function, W(p) and W(p), we
make use of Berezinskii’s® diagram technique, in terms of which these moments can be
written in the form

<g"/x)>1= T m""* )4 | R (n,x)L, (%) 3
<pn(x))J m=0 a,

Here R, (L,,, ) are the blocks introduced by Berezinskii. These blocks are equal to the
sum of the diagrams which are situated to the right (left) of the point x and which
have 2m free ends at this point. Equation (3) also contains a combinatorial factor

n

m"~ % a, or m"~? a,, which is determined by the number of methods used to form a
block R,, from n loops. At m> 1
n-1 T2 -
a, = 217" (2n) ; oo 1 T (2n) , 4
n(2n-1) T%(n) " 22n—-1 TI3fn)

where I'(n) is the gamma function. The quantity R,, (7,x) satisfies the equation

+ R, —2R) ()

m n+ 1

<8nm + 21)12 = m2R
dx

For an open system the boundary condition for (5) is R,, (x =0) =4,,5. To solve
(5), we can use a Laplace transform with respect to x and we can write the Laplace
variable in the form g(q + 1). In the case of relevant large values of m, for the Laplace
transform of R,, we find

m

T, 4" +q)=T%(q)T"2(29)(2q + 1) ' (80) 2mn)'"* K, , (A8mn)V'?), (6)

where K (z) is a Bessel function. In a semi-infinite system we have
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L(n,x)= R, (x>°)=qr,(n.g)| = 28mn)/?K,2Bmn)*). (7

=0
Using (3), (4), (6), and (7), we find the following expression for the moments in a
semi-infinite system:

1
+) (mtip-pyp T°Ch—1)
( n )_ 1-n 1— ..______2__
(} __1(8") n -{e@ 21p+1 P2( 21}7)
T'(n+ip - 1/2) 4 x In8n\2 x In8n ’ 1

|

ny= ghln—1)x/2, W(p) = (2nx)~ V2 le—(llzx)(lnﬁlq»x/z)’ ; (9
)

4. First, we consider the case 7 = 0. From (8) we find

i.e., W(p) peaks sharply at p = exp( — 3/2x) and then falls off in accordance with the
logarithmically normal law upon moving away from this value. In the limit x — o0,
only p =0 and p = e are attained. This should be expected to occur at n =0, i.e., for
absolutely exact levels.

The introduction of a finite 7 into (8) causes W (p) to fall off on the tails much
more rapidly than in (9):

a"} 1 ~ ~
Wlp>» — |\~ e 9%n: 5 ~e=4nl0
(p 811) e W < 8n)~e (10)

At nye™ *? the function W(p) no longer depends on x. In this case (7) should be
substituted into (3) not only for L,, but also for R,,. The simplest expressions in this
case are those for the state-density moments {p” ) and cumulants (p” ). at A = 0:

1
'in- —

)

It follows from (11) that W{(p) has the form of an inverse Gaussian distribution

in' 1
W) = \/4—:— ;3—/—2 exp 417-———-)) (12)

5. To interpret the results obtained by us, we note that even if # =0, in the
presence of an open boundary the electronic levels have a finite width 7,, which is
associated with the departure of an electron from the system. In this case p will have
the form as in (2), after the substitution of 7,, for 7. Because of the localization of the
electronic states in a 1D conductor, 77, decreases exponentially with the distance from
the boundary: 7, ~exp( — 2a,x), where a,, is the reciprocal of the localization length
of the uth level, which is centered near the point x. It is natural to assume that the

wp =K . B)/K,,@n); (o) = (n) ™" (1D
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distribution of ,, is in accordance with the normal law W(a) ~ (x/3m) VZexp[ — x/

8(a — 1)?). This result, along with the fact that 77, depends exponentially on a,,
accounts for the logarithmically normal law (9). We see that the principal contribu-
tion to p, , comes from the level nearest in energy, which is centered near the point x.
The fluctuations of p are determined primarily by the fluctuations in the width of this
level, rather than by the distance from it.

To explain the logarithmically normal law (9), we need to know not the particu-
lar features of the 1D case, but rather only the fact that the electronic states are
localized. For 7 = 0 and arbitrary dimensionality, the law like (9) should therefore be
valid in the insulating state.

At pZ exp( — x/2) the overall decay of the levels ceases to fluctuate, and the
behavior of W(p) is determined by the spatial and energy positions of the levels.
Consequently, the function W(p) of the type in (10) and (12) is also a universal
function for the insulating phase in a system of arbitrary dimensionality. In this case 7
can be specified, for example, by the temperature or inelastic relaxation.

6. It was shown in Ref. 4 that the nth moment of the complete state-density
fluctuation, Sv, is proportional to exp{n(n — 1)In(oy/0)], where g, and o are the
classical and renormalized conductivities, respectively. This result is in excellent
agreement with (9) if it is assumed that o« oyexp( — x/8). On the other hand, our
result seems to contradict Wegner’s® assertion that In (p" ) increases with increasing »
at a rate no greater than linear.

We deeply thank V. E. Kravisov, 1. V. Lerner, and Yu. A, Firsov for a useful
discussion of the results of this study.
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