Effects produced by superstrings in the e⁺e⁻ annihilation

I. V. Polyubin

Institute of Theoretical and Experimental Physics

(Submitted 16 April 1987)

Pis'ma Zh. Eksp. Teor. Fiz. 45, No. 12, 553-556 (25 June 1987)

The cross section of e^+e^- annihilation in $SU(3)\times SU(2)\times U(1)\times U(1)$ model is calculated. The infrared and QCD corrections, which markedly affect the Born cross section, are taken into account. The effects produced by the additional Z_E boson can already be seen at LEP energies.

The model with the gauge group $SU(3) \times SU(2) \times U(1) \times U(1)$ is now assumed to be the most probable low-energy limit of the superstring theory. This model gives rise to an additional Z_E boson, which mixes with a standard Z_0 boson by means of the mixing matrix

$$m_0^2 \left(Z_0 Z_E \right) \begin{pmatrix} 1 & a \\ a & b \end{pmatrix} \begin{pmatrix} Z_0 \\ Z_E \end{pmatrix} \tag{1}$$

where

$$m_0 = \frac{38.65}{\sin\theta_W \cos\theta_W} \text{GeV}, \ a = \frac{\sin\theta_W}{3} \frac{4-\lambda^2}{1+\lambda^2}, \ b = \frac{\sin^2\theta_W}{9} \frac{25x^2+16+\lambda^2}{1+\lambda^2},$$

 $\sin \theta_W$ is the Weinberg angle, and $x = \langle N \rangle / \langle H \rangle$ and $\lambda = \langle \overline{H} \rangle / \langle H \rangle$ are the ratios of the vacuum expectation values of the scalar components of the chiral superfields N, \overline{H} , and H of the $\underline{27}$ -plet of E_6 . As a result of diagonalization of (1), we obtain the physical mass states Z_1 and Z_2 ,

$$Z_1 = \cos\alpha Z_0 + \sin\alpha Z_E ,$$

$$Z_2 = -\sin\alpha Z_0 + \cos\alpha Z_E ,$$
(2)

with the masses

$$m_{1,2}^2 = \frac{m_0^2}{2} (1 + b \pm \sqrt{(b-1)^2 + 4a^2})$$

and with the coupling constants for the coupling with the fermions

$$g_{fi}^{1} = \cos \alpha g_{fi}^{0} + \sin \alpha g_{fi}^{E} ,$$

$$g_{fi}^{2} = -\sin \alpha g_{fi}^{0} + \cos \alpha g_{fi}^{E} .$$
(3)

Here (i = L, R: f = u, d, e, v...), and g_{fi}^0 and g_{fi}^E are the coupling constants for the

coupling of Z_0 and Z_E , respectively, with the fermion f. The quantities g_{fi}^E are determined uniquely.1

In discussing e^+e^- annihilation into hadrons it is customary to use the quantity $R = \sigma(e^+e^- \rightarrow \text{hadr})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$, where $\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ has the form²

$$\sigma_{\mu^+\mu^-}(s) = \frac{4\pi\alpha^2}{3s} \sum_{j=L,R} \left| 1 + \frac{(g_{ej}^1)^2}{X_1(s)} + \frac{(g_{ej}^2)^2}{X_2(s)} \right|^2$$
(4)

Here

$$X_{1,2} = \frac{s - m_{1,2}^2 + i m_{1,2} \Gamma_{1,2}}{s} ; \quad \Gamma_{1,2} = \sum_{f} \Gamma(Z_{1,2} \to f \, \overline{f}) + \sum_{f} \Gamma(Z_{1,2} \to f \, \overline{f}),$$

where

$$\Gamma(Z_{1,2} \to f \overline{f}) = \frac{G_F M_{1,2}^3}{3\sqrt{2\pi}} N_c \left(g_{fL}^{1,2} \right)^2 + (g_{fR}^{1,2})^2 + 2 g_{fL}^{1,2} g_{fR}^{1,2} \frac{m_f^2}{M_{1,2}^2} \right) \sqrt{1 - \frac{4m_f^2}{M_{1,2}^2}},$$

$$\Gamma(Z_{1,2} \to \widehat{f_i} \widehat{f_i}) = \frac{G_F M_{1,2}^3}{12\sqrt{2}\pi} N_c (g_{fi}^{1,2})^2 \left(1 - \frac{4m_{\widetilde{f_i}}^2}{M_{1,2}^2}\right)^{3/2}$$

and N_c is the number of colors of the width of the decay to a pair of fermions and their superpartners, respectively. The cross section σ for the reaction $e^+e^- \rightarrow$ hadrons is described by the equation

$$\sigma_{\text{hadr}}(s) = \frac{4\pi\alpha^{2}}{s} \left(\sum_{i,j=L,R}^{5} \sum_{f=1}^{5} \left| -Q_{f} + \frac{g_{fi}^{1} g_{ej}^{1}}{X_{1}(s)} + \frac{g_{fi}^{2} g_{ej}^{2}}{X_{2}(s)} \right|^{2} \right)$$

$$+ \sum_{i,j=L,R} \left| -\frac{2}{3} + \frac{g_{ti}^{1} g_{ej}^{1}}{X_{1}(s)} + \frac{g_{ti}^{2} g_{ej}^{2}}{X_{2}(s)} \right|^{2} \left(1 - \frac{m_{t}^{2}}{s} \right) \sqrt{1 - \frac{4m_{t}^{2}}{s}}$$

$$+ \frac{3}{8} \sum_{i=L,R} \operatorname{Re} \left[\left(-\frac{2}{3} + \frac{g_{tL}^{1} g_{ei}^{1}}{X_{1}(s)} + \frac{g_{tL}^{2} g_{ei}^{2}}{X_{2}(s)} \right) \left(-\frac{2}{3} + \frac{g_{tR}^{2} g_{ei}^{2}}{X_{1}(s)} + \frac{g_{tR}^{2} g_{ei}^{2}}{X_{2}(s)} \right) \right]$$

$$+ \frac{g_{tR}^{2} g_{ei}^{2}}{X_{2}(s)} \left| \frac{m_{t}^{2}}{s} \sqrt{1 - \frac{4m_{t}^{2}}{s}} \right| \cdot$$

$$(5)$$

Figure 1 shows the functional dependence R(s) for x = 9, 6, 3 and $\lambda = 1/2$, in agreement with $m_2 = 205$, 394, and 593 GeV and $\Gamma_2 = 2.2$, 4.8, and 6.7 GeV; m_1 varies less than 1 GeV. The maximum of R(s) near Z_2 , which is an order of magnitude larger than the maximum near Z_1 , is shifted to the left by 10-15 GeV. A functional dependence R(s) of this sort is determined by the destructive interference of the resonant and nonresonant terms of the amplitude $e^+e^- \rightarrow \mu^+\mu^-$. A more severe restriction on the mass of \mathbb{Z}_2 was found from the analysis of the data of the "Charm" collaboration³: $m_2 > 500-700$ GeV. Figure 2 shows plots of the cross sections $\sigma_{\rm hadr}/\sigma_0$ and $\sigma_{\mu^+\mu^-}/\sigma_0$, where $\sigma_0 = 4\pi\alpha^2/3s$, and also the R(s) curves for $m_2 = 593$ GeV. The calculations

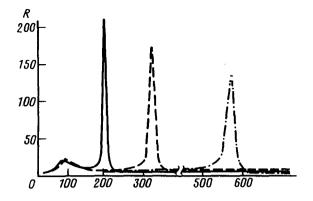


FIG. 1. R(s) for $m_2 = 205$ GeV (solid curve), $m_2 = 394$ GeV (dashed curve), $m_2 = 593$ GeV (dot-dashed curve); $\sin^2 \theta_W = 0.23$.

were carried out for three generations with $m_t = 40$ GeV and $m_{\tilde{f}} = 80$ GeV. The mass of the SU(2)_L singlet g quark is large. The resonances occurring at $\sqrt{s} \sim 2m_t$ were disregarded in all equations. The deviations of the $\sigma_{\rm hadr}$ from the standard-model predictions due to the Z_E of the boson amount to 5% and 38% at $\sqrt{s} = 100$ GeV and $m_2 = 593$ and 205 GeV and 5% and 30% at $\sqrt{s} = 180$ GeV, respectively.

Calculation of the electroweak radiative corrections to these processes is a task that should be undertaken separately. It is known,⁴ however, that in the total cross section the corrections associated with the emission of soft photons are large, while the rest of the corrections are on the order of $\alpha/\pi \sim 10^{-3}$. These corrections are as follows.⁵ If Eqs. (5) and (6) are written near the resonance in the form

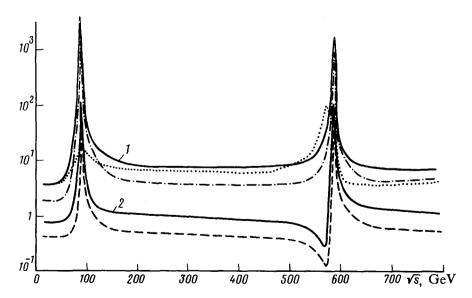


FIG. 2. Cross section $1 - \sigma_{\text{hadr}}/\sigma_0$; $2 - \sigma_{\mu^+\mu^-}/\sigma_0$; R(s)—dotted curve for $m_2 = 593$ GeV, dot-dashed curve— $\sigma_{\text{hadr}}/\sigma_0$ with allowance for the corrections; dashed curve— $\sigma_{\mu^+\mu^-}/\sigma_0$ with allowance for the corrections; $\sin^2\theta_W = 0.23$, $\Delta = 10^{-2}$, $\delta = 5 \times 10^{-2}$.

 $\sigma = \sigma_{\rm res} + \sigma_{\rm int} + \sigma_{\rm nr}$, where $\sigma_{\rm res}$, $\sigma_{\rm int}$, and $\sigma_{\rm nr}$ are the resonant, interference, and nonresonant contributions, respectively, we will then have

$$\sigma^{\text{corr}} = C_{\text{infra}}^{\text{res}} \sigma_{\text{res}} + C_{\text{infra}}^{\text{int}} \sigma_{\text{int}} + C_{\text{infra}}^{\text{nr}} \sigma_{\text{nr}} , \qquad (6)$$

where5

$$C_{\inf ra}^{res} = \left| \frac{\Delta}{1 + \frac{s\Delta}{M\Gamma}} e^{i\delta_R} \sin \delta_R \right|^{\beta_e} \Delta^{\beta_\delta} \left(1 - \beta_e \cot \delta_R \delta(s, \Delta) \right),$$

$$C_{\inf ra}^{\inf} = \Delta^{\beta_{\delta}} \frac{1}{\cos \delta_{R}} \operatorname{Re} \left[e^{i\delta_{R}} \left(\frac{\Delta}{1 + \frac{s\Delta}{M\Gamma}} e^{i\delta_{R}} \sin \delta_{R} \right)^{\beta_{e}} \right] ,$$

$$C_{\rm infra}^{\rm nr} = \Delta^{\beta_e + \beta_\delta}, \ \tan \delta_R = \frac{M\Gamma}{s - M^2}, \quad \beta_e = \frac{2\alpha}{\pi} \left(\ln \frac{s}{m_e^2} - 1 \right) \,, \quad \beta_\delta = \frac{2\alpha}{\pi} \, Q_f^2 \ln \frac{4}{\delta^2} \quad , \label{eq:contraction}$$

are the resolutions with respect to the energies and angles, and

$$\delta(s,\Delta) = \arctan \frac{s\Delta - (s - M^2)}{M\Gamma} - \arctan (s - M^2/M\Gamma)$$

is the radiation tail of the resonance. Allowance for the QCD corrections reduces to the factor⁶ [1 + $\alpha_s(s)/\pi$]. Figure 2 also shows σ_{hadr}/σ_0 and $\sigma_{\mu^+\mu^-}/\sigma_0$ with allowance for the corrections. For $\Delta = 10^{-2}$ and $\delta = 1^{\circ}$ these corrections amount to 30-40%. The infrared corrections, however, cancel out for R(s). In this sense, R(s) is stable with respect to these corrections. In models with a different gauge group, e.g., ⁷ SU(3)_c $\times SU(2)_L \times SU(2)_R \times U(1)_L \times (1)_R$, there is no maximum near \mathbb{Z}_2 in $\mathbb{R}(s)$. These topics will be further discussed in a comprehensive study.

I wish to thank K. A. Ter-Martirosyan for constant interest in this study and V. S. Abadzhev for assistance in the computer calculations.

Translated by S. J. Amoretty

¹J. Ellis, Preprint CERN TH 4439/96.

²V. D. Angelopoulos et al., Phys. Lett. **B176**, 203 (1986).

³N. I. Polyakov, Preprint ITEP 19, 1987.

⁴W. Wetzel, Nucl. Phys. **B227**, 1 (1983).

⁵M. Greco et al., Nucl. Phys. **B171**, 118 (1980).

⁶T. Appelquist and H. Georgi, Phys. Rev. D 8, 4000 (1973).

⁷M. V. Burova and K. A. Ter-Martirosyan, Preprint ITEP 124, 1986.