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The superfluid transport of precession which was recently observed in the B phase
is analyzed. The Landau critical current is found. The structure of the precession
vortex which arises during phase slippage of the precession is discussed.

Experimental® and theoretical® studies which were recently reported indicate the
existence of a magnetic superfluidity in the B phase of He®. “Magnetic superfluidity”
means the transport of spin over macroscopically large distances by a dissipationless
flow (superflow) which is proportional to the angle through which the order param-
eter rotates in spin space. With regard to relaxation processes in the 4 phase of He?,
this phenomenon has been under discussion since the papers by Vuorio® and Corruc-
cini et al.* The analogy between dissipationless spin transport and superfluid mass
transport is a limited one because spin, in contrast with mass, does not obey a strict
conservation law. The difference has a substantial effect on the nature of the dissipa-
tionless transport, but it does not rule out the possibility that it exists and can be
observed.’

The dissipationless transport observed in the B phase'” has several features which
distinguish it from the dissipationless spin transport discussed previously. While the
previous discussion® dealt with the transport of the projection of the spin onto the axis
of a static magnetic field, in the B phase we are dealing with the transport of a physical
quantity which is equal to the difference between the projection of the spin onto the
axis of the magnetic field and its projection onto some moving axis which nearly
coincides with the spin vector that is precessing around the magnetic field." This
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quantity is an approximate integral of motion (an exact integral in the limit of vanish-
ing gradients®). We will refer to it as the “precession moment,” since the quantity
which is its canonical conjugate is not a rotation angle of the order parameter in spin
space, as it would be for a genuine spin, but instead the rotation angle of a precessing
spin (a precession phase). We can therefore speak in terms of two types of superfluid
transport in spin dynamics: transport of spin and transport of precession moment (or
transport of precession).

In this letter we calculate the critical gradient of the precession phase, above
which the precession superflow looses its stability in the Landau sense: The creation of
spin waves reduces the energy of the system. The critical gradient is equal in order of
magnitude to the reciprocal of the dipole length ~10° cm ™! if the angle () between
the precessing spin and the magnetic field exceeds 104°. At < 104°, it vanishes.

The free energy of spin precession for the case of gradients perpendicular to the
magnetic field is, according to Fomin,**
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where y is the susceptibility; y is the gyromagnetic ratio; ¢, and ¢, are the velocities of
spin waves; a, ®, and 3 are the Euler angles in Fomin’s theory (« is the precession
phase); and @, = yH is the Larmor frequency. The precession frequency w, is a
Lagrange multiplier, which minimizes the free energy for a given precession moment
with a density P=M, — M = (u — 1)w, y/v. The angle ® is determined in a homo-
geneous state from the condition for a minimum of the dipole energy,
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It vanishes at 5> 104°. At 8 < 104°, a minimization of ¥ with respect to ® results in

the vanishing of ' V. From Hamilton’s equations for the pair of conjugate variables a, P
we find V& = Vu =0 for a steady state with a precession flux
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The value of « is found from the condition for a minimum of free energy (1):
oF X 1 - 2
—_— = = (wp - W + —A'fu)(Va) + V'(u) =0.
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This condition is equivalent to the condition that the chemical potential for the steady-
state superfluid mass flux remains constant.
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To determine the stability of the precession flux, we find the change in the energy
of a state with a precession flux which is caused by a small static plane-wave ( ~e™**)
fluctuation of its parameters. For small values of k, all the corrections which arise
from the terms containing V@ and V u can be discarded, and the fluctuation energy,
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— —
is quadratic in the small deviations 4’ =u — u, and Va'= Va — h from the steady
current state, with given # = u, and Va = h (we will be omitting the subscript 0).
The condition that this quadratic form be positive definite,

A(u)[A" (u)h® + 2V"(u)] > 24" (u)*n? , (6)

is the stability condition. The value of 4 at which this condition is first violated is the
critical value of the gradient; at £> 104°, it is given by
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At B<104° we have V"(u) =0, from which we find 4. =0. Consequently, at
[ = 104° there is an abrupt change in the critical gradient from 0 to a value on the
order of the reciprocal of the dipole length, £ ; '~Q/c.

In Fomin’s study,” the critical value was determined by the Ilength

E=~c/\(wp — 0 Yo, , which does not—according to the analysis above—directly af-
fect the stability, since the term ~ (wp —w;) in free energy (1) is linear in
P~ (u— 1) and does not contribute to the quadratic form which determines the sta-
bility. However, wp — o, does affect the value of u in the flow, and a change in ¥ may

FIG. 1. Mapping of states with a uniform precession flux
onto the space of the order parameter of the B phase (a
sphere of radius 7). Part of the sphere is cut away to
show the sphere of radius cos~'(1/4) (an angle of 104°),
on which the dipole energy vanishes (degenerate ground
states). The thick solid lines are mappings of states with a
precession flux onto the sphere of angle 104° (8 < 104°)
and onto the xy plane (8> 104°).
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FIG. 2. Mapping of a precession vortex in a section in the
xz plane. Dashed line—section of a surface of the map-
ping for homogeneous fluxes; thick solid line—the same,
for a vortex. The complete mapping surfaces are surfaces
of revolution for the indicated lines around the z axis.

cause a transition from a large critical gradient to a vanishing one (see the discussion
of the experiments at the end of this letter).

The condition for the stability of a superfluid precession flow which was derived
above is an analog of the Landau criterion (cf. the derivation of the analogous crite-
rion for a spin flux in a ferromagnetic, which is summarized at the end of Subsection
3d in Ref. 5). From the theory of superfluidity we know that dissipation in a superflow
sets in before the Landau critical velocities are reached (experimentally, the dissipa-
tion sometimes sets in considerably earlier) and is determined by a process of vortex
formation and the motion of vortices across the flow (phase slippage). The structure
of an axisymmetric vortex which causes a slippage of the precession phase (a preces-
sion vortex) is determined by the circumstance that the gradient of the phase, V &, has
only an azimuthal component V a = 1/r (ris the distance from the vortex line), while
® and u = cos  depend on only r and are found by minimizing the energy. At the
center of a vortex we have 4 = 1 and ® = 104°, while at the periphery the angle ®
exponentially approaches zero on the line £,,. The expression describing the decay of
the deviation, ' =u —u_ (u_, is the value of u as p— « ), on the other hand, is a
power law:
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Figure 1 shows a mapping of states with a uniform precession flux onto the space
of the order parameter of the B phase [the space of three-dimensional rotations
R(n,0)], which is a sphere of radius 7. The points of this sphere are found by plotting
the rotation angle € along the direction of the directrix n (the rotation axis) drawn
from the center of the sphere. It can be seen from Fig. 1 that in a state with a preces-
sion flux there is a spatial rotation of n around the z axis. Figure 2 shows a section
through the mapping of a precession vortex.

In the experiments of Ref. 1, phase slippage was observed at phase gradients an
order of magnitude below the critical value found above, £ , '~ 10° cm ™. In addition
to the general factors which stem from the aspects of vortex formation that are still
unclear, even for an ordinary superfluid liquid, this discrepancy might be explained in
the following way. In the experiment, the angle S was just slightly above 104°. It
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follows from condition (4), which determines # = cos f3, that an increase in Ve at a
given precession rate @, leads to an increase in , i.e., to a decrease in . Locally, in
regions of a large gradient V «, the angle /5 may fall below 104°, and in such regions a
phase slippage will begin immediately since the critical gradient vanishes at /5 < 104°,

I am indebted to I. A. Fomin for useful discussions.

Y. L. Golo brought this to our attention.
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