Spectrum of growth rates of an isolated dendrite
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An analysis is made of a mechanism which determines the velocity and direction of
the growth of a two-dimensional dendrite and which involves an anisotropy of the
surface tension. The growth rate is found in the limit of a slight anisotropy, and it is
shown that the dendrite grows in the direction of the lowest surface tension.

The crystallization of a supercooled melt may be regarded as a typical problem of
structure formation. Steady-state solutions for an isolated two-dimensional dendrite,
for the problem incorporating thermal conductivity and heat evolution at the inter-
face, are described by the family of parabolas y = — x°/2p, and the growth rate satis-
fies' v «c 1/p. The dendrite shape observed experimentally is indeed very nearly a pa-
rabola,> but the parabola parameter p and the velocity v are determined
unambiguously by the growth conditions. In an attempt to find a mechanism which
selects solutions with a definite velocity it turned out that if there is a nonzero isotrop-
ic surface tension at the interface, there are no steady-state solutions at all. A solution
of the problem has been found by allowing an anisotropy of the surface tension. The
solution consists of the assertion (made on the basis of numerical calculations®#) that
in this case there is a discrete spectrum of rates, and the only solution Whlch is stable is
that which corresponds to the maximum rate.

A qualitative analysis of the growth equations has shown that at small values of
the anisotropy parameter @ and of the supercooling parameter A the growth rate has
the behavior® v« A*a”/%. In the present letter we derive an analytic theory for the
spectrum of velocities of the crystallization front.

The shape of an isolated dendrite in steady-state growth is described by the equa-
tion

A +(dofo)k[yx)]=(p/r) I explply(x') - y(x)}} Ko

X (Vi —x) +[(x) - yx)P yax',
(1)

where K, is the modified Bessel function, all lengths are expressed in units of g,
A= (T, — T,)c,L ~'is the dimensionless supercooling (T, is the melting point, T,
is the temperature of the melt, ¢, is the specific heat, and L is the heat of fusion),
d,=yT,c,L "% is the capillary length (y is the surface tension), k{y(x)] =y"/
(1+ ):'2)3/S is the curvature of the front, p is the Peclet number, p = vp/2D, and D is
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the thermal diffusivity (the thermal characteristics of the phases are identical). In the
absence of a surface tension (d, = 0) a solution of (1) is the parabola' y(x) = — x?/2
and A =2\pe? 7 e~ "dy. As in Ref. 5, we introduce a nonzero, slightly anisotropic
surface tension d, = 30(1 — «a cos 48), where tan 8 = dy/dx and a<1. The shape of
the front is distorted, y(x) = y,(x) + {(x), and the linear equation for £(x) takes the
following form® in the limit o = dy/pp <1, A<1:

3o¢’ A+x)Y2 = x+x" Ex)- t(x')

- : dx' =0, 2
(1 +x?) 2nA(x) e x-x! 1+(x+x')2/4 =0 (2)

05_" —

where 4 (x) =1 + 8ax®/(1 + x?)% The integral in (2) is taken over the residues if the
function £(x) is split up into the terms {, (x) and £_ (x), which are analytic in the
vpper and lower half-planes of the complex variable x. Ignoring the derivatives,
we find a  Wiener-Hopf equation, (x+DXIE (x)—& . (—x+2D)]
—(x—D[E_(x) =L _(—x—2i)] =icA(x)(1 +x*) "2 Its solution satisfies
£ (x) and has singularities at the points x = 1 i. The terms with derivatives in (2) are
important in the region |x 4 i| ~c'/? and play the role of a singular perturbation.

Let us examine the neighborhood of the point x = i in more detail. Near it, it is
sufficient to consider only {_(x); after making the replacements x =i(1 — a'/%r),
Y(2) =a 't 73 _[x(£)], we find the following equation for ¢:

da*yjat® + Py =— 1j(at¥*), (3)
where
P2(t) = —[2Y2 072 /(1 — 2) + 21/(161 )], (4)

The small parameters o and « are eliminated by introducing 4 = a’/*/a. Equation (3)
is an inhomogeneous Schrédinger equation, defined in the plane of the complex vari-
able # with a cut along the semiaxis ( — «, v2). Its solution for 1 €|t | <a™"2 should
have the asymptotic behavior ¢ = ¢t ~°/4/(2%/24), which is found by ignoring the deriv-
ative in (3) and which insures a joining with the solution of the Weiner-Hopf equation
in the region 1> |x —i|>a'/2

At |t]> 1 the semiclassical solutions of the homogeneous version of Eq. (3) are of
the form ¢, , ot ~3/%exp[ + (4 + 7)2'/%4 1/2t7/#]. The boundary conditions formulat-
ed above are therefore equivalent to the condition that the solution of (3) is finite on
the rays arg t = 0, + 4#/7. These conditions can be satisfied at only certain values of
the parameter A, and these particular values determine the spectrum of velocities of an
isolated dendrite. Let us calculate the A spectrum in the semiclassical approximation,
making the formal assumption 4> 1. For this purpose, it is sufficient to solve Eq. (3)
(first) in that neighborhood of the point ¢ = 0 in which the branch point and the
second-order pole at =0 and the turning point at ¢,~2"7/*1(21/1)*'' ¢1 lie and
(second) near the turning point ¢, = v2, where P?(¢) has a pole. Finally, we join these
solutions, making use of the semiclassical asymptotic results which hold between turn-
ing points ¢, and ¢, = V2.
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Near the point ¢ = 0, a particular solution of inhomogeneous equation (3) can be
written in the form ¥, «t*/*@ (At */?), where @(z) is a power series in z. Solutions of
the homogeneous equation are given by the functions 7 /2 s, (2744 V2 11/4/11),
where J, is a Bessel function. The constants in the homogeneous solutions are deter-
mined by the condition that the total solution must decay on the rays arg f = 27/11,
6m/11 (as we go from |t | <1 to |¢|> 1, these rays correspond to the rays arg ¢ = 0 and
arg f = 47/7). On the upper bank of the (¢,, 7,) cut we then have

Y« P~ l’z(t)expj_i[tf P(thdt' ~ 5n /44 ]} (5)
t

Near the turning point, ¢, = v2, a solution of (3), which is real and which decays as
t— 0, is found by using the modified Bessel function K,(z). On the upper bank of the
cut this solution is described by
V7
Yy« P~ Y2 (t)exp { —i[ §f P(t")dt' + 3m/4]}. (6)
t

A solution for ¥/(¢) in the lower ¢ half-plane is found by taking the complex conjugate
of this solution. Joining solutions (5) and (6), we find a condition on the semiclassical
A spectrum:

\/-2-1
[ Pt)dt = n(n+4/11); n=0,12.. , )
tl

where ¢, is the root of the equation P(¢) =0. In the case #>1 we find from (7)
Z’n :3.0”2.

The growth velocity at A <1 is given by

v, = 208%*a™* /(n?\,do) . (8)

The spectrum A, was also found through a numerical integration of Eq. (3); the
results are 1,~0.48 (0.79), 4,=5.8 (7.3), A,=17.5 (19.7) and A,=34.4 (38.5),
where the numbers in parentheses are the values found from (7). According to the
numerical results,* only the solution with 4, should be stable and therefore experimen-
tally observable.

Equation (2) has been written under the assumptions’ p, A< 1. Qur analysis
shows that, because of the small size of the singular regions near x = -+ i, the linear
equation for the singular part of the function {(x) will be applicable as long as the
condition p<a~'/? holds, i.e., even at p~ 1. In this case, we cannot find a solution for
the regular correction to the shape of the front, but it is sufficient to use the exact
relationship between p and A to find the dependence of the front velocity on the
supercooling. It follows that an anisotropy of the surface tension, «, is the only small
parameter which can be used in this problem.
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We calculated the growth velocity of a dendrite oriented in the direction of the
lowest surface tension. If these directions differ by an angle ¢, we need to replace
(t*—2) by [t*> — 2 exp( — 4ip)] in expression (4) for P?(z). It turns out that a solu-
tion with the given boundary conditions is possible only in the case ¢ = 0. A dendrite
can therefore grow only in the direction of the lowest surface tension. This conclusion
is of a general nature and should not be directly related to the circumstance that the
parameter « is small (we have made use of this circumstance in the present calcula-
tions). An experimental verification of this conclusion would be strong evidence that
the mechanism discussed is responsible for determining the velocities and directions of
the growth of a two-dimensional dendrite,
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