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A theory is derived for the self-induced transparency of Gaussian light beams. A
solution found in the single-mode approximation is a product of McCall-Hahn
soliton and a Laguerre—~Weber function. The carrier frequency of the pulse is
redshifted from the transition line. The shift is inversely proportional to the radius
of the minimum light spot.

In a well-known study, McCall and Hahn' observed a self-induced transparency
during the coherent interaction of ultrashort intense light pulses with a medium. It
was shown theoretically and experimentally in Refs. 2 and 3 that 27 pulses with a flat
wavefront (the model of Ref. 1) are unstable with respect to transverse perturbations.
Experiments by Egorov and Reutova* showed that a short, intense pulse with a con-
verging beam shape propagates anomalously large distances with essentially no ab-
sorption in a resonant-absorption medium. The inadequacy of the plane-wave approxi-
mation has made it necessary to generalize the coherent interaction of short pulses
with a medium with an inhomogencously broadened line to the three-dimensional
case.

The wave equation is analyzed in the radially symmetric case in the approxima-
tion of slowly varying phases and amplitudes. We are interested in a steady-state
autowave solution. We introduce a dimensionless wave variable u = (r — z/v)/7,
where 7 and v are the length and propagation velocity of the pulse. We seek a solution
of the wave equation in the form

€ (u, r) exp(—t(wt - kz)).

To determine the slowly varying amplitude & (u,7) we have a parabolic equation in
terms of the dimensionless coordinates p, = #/¥,, 0, = k(¢ — v)/cv, k = w/c, where ¢
is the velocity of light in the medium:

a2 1 4 r3 3 2
a_Pg€+Poao€ 2100———5——41rk 2p. (1)

We expand & and & in series in orthonormal Laguerre-Weber functions p
=po/yJ1+ (v —u)/uy tan = u — u, /u,,
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which constitute a solution of the parabolic equation. The dispersion of a Gaussian
beam, 75, and the parameter u, are related by

2
uo=g%_tp'- (3)

We now write expansions for & and Z:

£= —ZE (¥)Da (v, 7),

n=0
E P,(u)Dy(u,r). 4)
u—O
Making use of the orthogonality of the Laguerre polynomials, we find a relationship
between the coefficients from Eq. (1):

d 2 k*r
-‘E-E,,(u) =

P..( ). (5)

Since the pulse is short, we can ignore relaxation processes in the medium. The
Block equations for the medium become

dp sdr dN . .
-J;-—uA P——N€ = -t—(fP -&*P), (6)

where Aw = @ — w,,. Eliminating the population N from Eqgs. (6), we find a linear
second-order differential equation for the polarization 7. Substituting expansion (4)
into it, and using (5), we find an infinite system of coupled nonlinear third-order
differential equations for the coefficients E, (u). We are interested in separate single-
mode equations, in accordance with the experiments of Ref. 4:

d T3 Bn +[E L g, - (-ii-E,,)z] i{ap — Awr)

™ du? du
d o & o 4 b
~Ta E,,d 2 E'z—-lE |2 (1)
where
Fn =/|Dn|4rdrd§0s Gn = 2;;1- (8)

Equation (7) is written in first order in a perturbation theory in the small parameter
us " Using (1)—(8), we find an autowave solution for the complex field amplitude:

En(u) = sechuD, (u,r) exp { (ZZ:; 1_ _2w°b 1') u} . (9

h 2
dr‘/p
It follows from an analysis of solution (9) that the relation
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Ju,max|&,| =const holds for the ficld amplitude, with o =1/27
> \/‘LL—I = 1/y4m > ... . The mode amplitude thus increases with the mode index. There
exists a threshold pulse intensity, above which there is an autowave solution for only
the zeroth mode. The thresholds for the other modes are correspondingly higher; this
circumstance is helpful for singling out a single-mode solution. In the experiments of
Ref. 4, an additional focusing of a single-mode laser beam by a lens was of assistance in
establishing an autowave solution of the type in (9). This focusing was carried out in
such a way that the focus was directly behind the cell holding the absorbing medium.
A pulse with a converging geometry of a Gaussian beam propagated through the
medium.

For single-mode solution (9), the energy conservation law’

3 |E,(t — z/v)|? _c?_ |En(t — z/0)|? ON,
°az ix + ot ir +ho at 0 (10)

holds. By virtue of this conservation law, the medium and the field exchange energy,
without loss. Conservation law (10) determines the pulse propagation velocity:

2
vl =1 (1+ %) (11)
n
where
A
n = rading (12)

This velocity is much higher than in the one-dimensional case, since we have i, <1.
The velocity increases with the mode index.

The Gaussian structure of the beam results in a frequency shift, which cannot be
found for a plane-wave solution. The steady-state propagation of the autowave solu-
tion is characterized by the shifted frequency

_3@n+1)

W = Wap 2 ot

(13)

The shift is in the red direction from the transition line, in agreement with the experi-
ments of Ref. 4. Using expressions (3), (11), and (12), we can link the shift (z,7) '
with quantities which can be measured experimentally: the minimum radius of the
light spot (r,), the pulse length 7, and the density #,. This relationship is

-1 _ Ta
(rup)™* = (Fro)ord” (14)

When we go over to a plane wave, (kr,) ~*—0, the Gaussian beam spreads out, the
frequency shift vanishes, and we obtain the McCall-Hahn solution. A significant fre-
quency shift in the red direction was noted in Ref. 4. By virtue of that shift, even a
pulse which was not very short (7,/7=3) propagated anomalously large distances
(koL =60).

A significant frequency shift was not observed in earlier experiments. The proba-
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ble reason is the strong dependence of the shift on the radius of the Gaussian beam,
(uo7) ~'~ry . The use of a converging beam geometry makes it possible to bring out
this effect.

To pursue the analysis, we rewrite expression (14) in the form

1w _ maz|E, ]} /4x
(o) = oo™ 5= hamg (15)

We see from this expression that the frequency shift is proportional to the energy of
the electromagnetic radiation field divided by the maximum energy which the medium
is capable of absorbing. In order to satisfy the condition (7u,) ~' = const, we need
S = const; this condition is in qualitative agreement with the experiments of Ref. 4. By
virtue of our perturbation theory in the parameter u; ', expression (15) becomes
inapplicable at very large values of max | E, |? or at small values of N,. This case,
u, <1, has not previously been studied theoretically, but the experiments of Ref. 4
suggest that (15) should be generalized to the case S>1. A saturation apparently
arises in terms of the parameter S. We can thus argue that the empirical formula

w S

-1 ——
(o)™ = Froyi 14 57 (16)

is valid.

From this discussion we can draw the following conclusions. (1) The autowave
solution found here describes a self-induced transparency accompanying the propaga-
tion of a pulse of a Gaussian light beam through a resonant medium with a homogen-
eously broadened spectral line. (2) In agreement with the experiments of Ref. 4, the
solution contains a characteristic frequency shift of the pulse, in the red direction from
the center of the absorption line. A spatially focused and temporally compressed light
pulse is realized if the refractive index increases in this space-time region. This increase
can be arranged through the use of an appropriate spatial and frequency dispersion.
Such a dispersion occurs in a Gaussian beam. Because of the self-consistent nature of
the pulse propagation, the frequency dispersion puts the carrier frequency of the pulse
on the long-wavelength wing of the absorption line. This circumstance in turn pro-
motes, through the dispersion mechanism, an increase in the refractive index in the
region occupied by the pulse. The magnitude of the shift is inversely proportional to
the square of the minimum radius of the light spot and to the square of the pulse
length, (14). (3) The pulse propagation velocity is much higher than that for a plane
wave, and it increases with increasing index of the transverse mode [see (11)]. (4)
The solution found here can be generalized to the case of a resonant medium with an
inhomogeneously broadened absorption line.
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