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The nature of the Coulomb energy of excitations in small tunnel junctions is
discussed. The conventional electrostatic definition of this energy is physically
meaningless.

An important characteristic of a small tunnel junction is its Coulomb energy W,
in the charged state, which, in the combination ¥ = W_/T, where T is the tempera-
ture, determines the scale of Coulomb-blockade effects in systems of this sort. The
numerous studies of the particular features of the Coulomb blockade in the steady
state and in dynamic situations have usually employed the assumption that the Cou-
lomb energy W, can be written in the form W, = n?¢*/(2C), where the phenomeno-
logical constant C represents the electrical capacitance of the blocking unit, and »
= 1,2,3,... (see the original papers'~ and, as a recent review, Ref. 6). In those cases in
which authors have in principle calculated a value for W,, the hypothesis that the
energy W, was of an electrostatic nature has been justified. However, the original
equations were not fully studied in those papers (see the papers by Kulik and
Shekhter,> Nazarov,” and Glazman and Matveev® ).

In this letter we wish to discuss the properties of the energy W, for a junction
with a blocking unit (a grain) in a simple model which gives a qualitatively correct
description of the properties of the Coulomb interaction in the Coulomb-blockade
problem.

1. We consider a system of three plates, arranged in the ¥ = 0 plane as shown in
Fig. 1. This simple configuration simulates the problem of a junction with a grain,
whose role is played by the central plate, on the interval — a<x< + a, between two
metal banks. This model is of course unsuitable for describing the actual discrete
nature (or point nature) of the electron charge. However, for answering the qualita-
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FIG. 1.

tive questions in which we are interested here it is sufficient to assume a quantized
charge per unit length of the plates.

We assume that the potentials on the plates have the values 0, ¢, ¥ from left to
right. What is the electrostatic energy of the junction as a function of @ at a fixed V'?

A convenient feature of this geometry is that in this case we can use the known
solution of the Dirichlet problem with a unit potential #x =1 on the line segment
b<x<c and a potential which vanishes elsewhere, i.e., on the lines — « <x<& and
<X < 4 o

u(z,y,b,¢) = % (arctan c; % _ arctan b;x) . (1)

Constructing the total potential #(x,y) as the combination
“(31 y) = ‘Pu(xr y,—a, +“) + V“(zs Y, q, °°)) (2)
we find a solution of #(xy) which satisfies the necessary boundary conditions:

0 —-00<z<L~a
4(z, y)|y—o = {qp ~a<z<+a . (2a)
V 4a<z<00

The corresponding distribution of the electron density along the electrodes, n(x), is

1 [08u du _a(V-20)+Vz
=) = 4me (ay 07 By _0) T 2n%¢(a? - 22) 3

With expression (3) for n(x), we can easily calculate the Coulomb energy W, per
unit length for our system of three plates:

+a 00
We(p,V) = %ngo + %QzV, Q1= c/ n(z)dz, Q2= e/n(z)dz. (4)

The charges Q, and @,, with n(x) from (3), have logarithmic divergences of obvious
origin. To eliminate them, we must assume (for example) that the width of the central
plate is smaller than 2a by an amount §/a <1.
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The energy W, (@,V) has a minimum at ¢ = ¥ /2. In this case the charge on
region @ #V /2, the energy

the central plate, @,, is zero. In the
SW, =W, (¢, V) — W_(V/2,V) can be written
1 v\? 1. a
W,==-Cle—— C=-—In-.

°7 2 (P 2) ’ =iy

(5

Expression (5) agrees with the phenomenological determination of W, in the
theory of the Coulomb blockade.'® However, the net charge which arises at a grain
under the conditions ¢ # ¥ /2, reaches it from both banks of the system according to
(3) and (4) [see the distribution of the corresponding density »(x) in Fig. 2a]. This
distribution of the charge density en(x) qualitatively contradicts the distribution
which we would expect for this charge density in the case of individual hops of an
electron from a bank to the grain or vice versa, as represented in Fig. 2(b). We are left
with the conclusion that, whatever is going omn, the activation energy W, observed in
the low-temperature limit ¥y = W,/T> 1 in a study of the temperature dependence of
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FIG. 2.
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the conductance of a tunnel junction with a blocking grain cannot be defined in elec-
trostatic terms; W, is not equal to the quantity W, in (5).

2. It can thus be assumed that the energy W, is formed near an individual tunnel
junction. Let us assume for definiteness that we are dealing with a junction between a
plane and a sphere of radius R, which are separated by a gap d(r):

r2
d(r)=do<1+%ﬁ), r<R, (6)

where 7 is the distance along the plane of the junction.

The proposal is to estimate W, as the energy of a plane capacitor which has a unit
charge e, in which the distance (D) between plates is D = d,, + 2r, (where 7, is the
Debye screening length inside the metal and is on the order of interatomic distances),
and which has an area S'= 7/, where r. is an effective radius. A tunneling occurs
within this capacitor. The estimate of the energy is

2¢2D
Kkr3

' (7

~
a —

where « is the dielectric constant.

The quantity 7. arises as the radius of a path in a calculation of the total current
through the tunnel junction. Competing factors here are (a) the tunneling probability,
which falls off exponentially with an increase, as a function of 7, in the thickness of the
tunnel junction, d(») [see (6)], and (b) the Coulomb energy of an electron in the
tunnel gap, written as in (7) with an arbitrary radius r and incorporated in the disper-
sion relation for the tunneling electrons. The latter step is legitimate in the Thomas—
Fermi approximation. As a result, we find

. 4xR%he? D

re = .
kTdo\/2m. (Vo — b)

Here V, is the barrier height, u is the position of the Fermi level, and m. is an effective
mass.

(8)

Estimates (7) and (8) are valid if individual electron hops are predominant in the
tunneling. A necessary condition for a current flow of this sort is the familiar require-
ment that the conductance G of the tunnel junction satisfy the limitation G < e*/h. We
are assuming here that this limitation is satisfied.
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