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The dynamics of the quantum polaron (QP) is studies at zero temperature. The
photon variables are excluded and the Green’s function is obtained. The effective
mass for both large adiabatic QP and small nonadiabatic QP is calculated. In the
first case the principal contribution to the mass comes from the thin “crust layer”
on a polaron surface.

In our recent work' a new type of a self-trapped particle—quantum polaron
(QP)—was proposed. In contrast with the usual polaron, QP is not accompanied by a
lattice displacement. The origin of self-trapping is the local suppression of the quan-
tum fluctuations. Either large adiabatic QP or small antiadiabatic QP can arise, de-
pending on the parameters of the system. The quantum polaron can be realized in the
systems, where the quadratic electron-phonon interaction of the sign corresponding to
the phonon stiffening dominates and the linear interaction is suppressed, for example,
due to the symmetry restrictions. The most interesting candidates for QP are, in our
opinion, the charge carriers in La,CuO, coupled to the soft orthorhombic modes,? and
the electrons which interact with the rotational modes in molecular crystals.?

The structure of QP and the conditions for its existence were formulated in
Ref. 1. However, a very important question about the spectrum and dynamics of such
a polaron remained open. In this paper we will solve this problem by using the meth-
ods of integration over the lattice degrees of freedom. We will study the generalized
model, in which both linear and quadratic couplings are present. It should be stressed
that we restrict the analysis to the 7 = 0 case. It is known* that the quadratic coupling
gives rise to unusual 7-dependences even for the perturbative effects.

We will start with the most interesting and complicated case of the continual
adiabatic polaron. The Lagrangian density of the system in the “mixed” representa-
tion® can then be written in the form

e 1 1 1 1
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where ¥ = ¥(rt) is the electron wave function, p = |¢|? is the electron density, z, = 1/
m,a;, m, is the electron mass, a, is the lattice spacing, Q = Q(r?) is a lattice displac-
ment, M = M, a}, M,, is the atomic mass, o, is the phonon frequency, I" and y are
the constants of linear and quadratic electron—phonon coupling, respectively (> 0).
All the distances are measured in the units of a,, so 7, Q, and 1 are the dimensionless
variables. Everywhere #i= 1, s0 7,, w,, I, 7, and M ~! have the dimension of energy.

For simplicity we consider only the dispersionless phonons and the local interaction.

After the integration over the phonon variables the electron Green’s function
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takes a form

G(Fats, Fit)) = / Dy* Dy (Fat)¥* (Fits) exp(i / dFdt(iv* 3 — %t,|V¢|2)}

X H szdQIX:Io (Qz)Xwo (Ql)g [Q2t2, Qltl |¢(Ft)]x (2)

where y,, (Q) is a ground state wave function of an oscillator with a frequency @ and
the electron—phonon coupling is assumed to be adiabatically turned off at ¢, and 1,
(t,~ — w,l,—~ + ). Note that for our single-particle problem the operator id, must
be determined in such a way that all the diagrams containing the electronic loops
vanish.’ In Eq. (2), g is a Green’s function of an oscillator at the site 7 with a time-
dependent frequency w(7f) in the presence of an external force f(71):

w? = wd + Q%p(7t), f=Tp(ft), O = y/M. (3)

The problem of such an oscillator is exactly semiclassical® and its Green’s function can
be expressed in terms of a corresponding classical solution.” The general expression is
rather cumbersome, but in this work we are interested only in the leading adiabatic
approximation and in the first nonvanishing corrections to it. Then the problem is
simplified and the electron Green’s function can be expressed in terms of an effective
Lagrangian:

2
Lg =Lyn —U, Ly, =1¢*0p+ %[_a;ng_;L + _I;I_[&Q(p)]z’

= e v +~—wp 21\401 PQ Pl

where Q(p) = T'p/Mao*(p) is the shift of the oscillator’s equilibrium position due to
the force f. The last two terms in L, are the nonadiabatic corrections; these terms
determine the polaron’s mass M.,.. For the calculation of M.; we insert
Y= e~ "'y (# — Bt), which corresponds to a polaron moving with a velocity 3, into
Egs. (3) and (4). Expanding the result in 7 and identifying the coefficient at v?; with
M /2, we obtain

My =me+ % / d7(3,0)}/w’ + M f d7(8,Q)". (5)

Here 1), is the normalized wave function of a stationary problem. It corresponds to the
minimum of the energy functional J[¢] = § dFU [see Eq. (4)]. In the limit = 0 the
functional J is transformed to a well-known form for a linear coupling polaron,® and in
the limit I' = O the result of Ref. 1 for QP is reproduced. Accordingly, the third term
in Eq. (5) is analogous to the usual form of a linear-coupling polaron mass,® and the
second term is a purely quantum contribution. Note that the absence of a collapse for a
three-dimensional QP (see Ref. 1) is preserved even in the presence of linear coupling:
the quadratic coupling suppresses the collapse for > 0.
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All of the above considerations apply only to the large adiabatic polaron, which is
realized (see Ref. 1) when the following conditions are satisfied:

te > Q> wo; (Qfwo)(w/t)P/(PH) > 1, (6)

where D is the dimension of space.

It can be shown that for (Iw)/MQ*) (t,/Q)P?/ P+ &1 a linear coupling may
be treated as a perturbation. The above 1, will then nearly coincide with the ¢, of QP,
obtained in Ref. 1 (see Fig. 1). In the crude approximation (totally ignoring w,) we
have

Yo(F) = Yeruae (7) = B(a — |7)($o(F) + <) (7)

Here ¢, is a spherically symmetric wave function of a free electron, and the constant ¢
is determined by the requirement of the ¢,(?) smoothness at the polaron surface
(|7] = a). The correction to J due to the linear coupling is AJ = — I'?/2y, and the
corresponding Oy (%) =Quq. (F) = (L/y)3a — |7]).

A polaron therefore consists roughly of a “core” of radius @ and an “outer space”
(7| > a), where 1,=0 and the oscillators are free. However, in a more accurate ap-
proach, there is a thin intermediate layer—a “crust” (||?| — a| S Aa), where the two
terms in Eq. (3) for w? are of the same order of magnitude and the true v, differs from
WYeruae- The crust thickness is

Aa = (wot.)/?/0 < a =~ (t./0)*(P+4), (8)

In deriving Eq. (8) we have assumed for simplicity that a linear coupling is negligible
both in the core and in the crust. It needs a somewhat stronger restriction on T': Iw,/
MO <1

FIG. 1. The shape of a wave function #, and a lattice displacement Q, for large adiabatic QP (...q. and
Q..uq. are shown by the broken lines). The surface |7 = @ is a polaron’s “core” boundary; Ag is a thickness
of a polaron’s “crust.” An integrand in Eq. (5) for M., is represented by a dot-dashed line.
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rude 1to Eq. (5), then
the result would diverge in the limit |?| »a, since .4 (F) = (Q/2,) (|7 —a)? at
0 <a — |F|€a. This means that the main contribution to M_; comes only from the
crust, and that M_; depends on w,. Simple estimates give

M., 0\3/2 t, 5D/(2D+8) 2 0\ Y2 /¢.\50/(2D+8)
) e ()
m wo N MQ3 \wp Q

If the crust is ignored and M 4 1s calculated by inserting ¢/,

e

where ¢, and ¢, are on the order of unity. The first term is due exclusively to the
quadratic coupling and exists at I' = 0. The second term is a small correction due to
the linear coupling. Note that M >m, in the entire domain of adiabatic polaron
existence.

The principal role of the crust in the effective mass poses a nontrivial question
about the adiabacity of the system’s wave function within the crust. The adiabacity
fails sooner or later if one goes outside the polaron center. It can be shown, however,
that within the crust the adiabacity is preserved as long as Aa> 1, i.e., (wyt,)"?/Q> 1
(Fig. 2). This means that unless the crust is macroscopically thick (thicker than the
lattice spacing), the adiabatic approximation is inapplicable for the calculation of M .

Let us now consider the case of a small antiadiabatic polaron which is realized for
wy<t, €. If ¢, is small enough, then the electron is expected to be localized at a
single lattice site, while the neighboring oscillators are not disturbed. Then, to find the
polaron bandwidth, one must calculate the matrix element of the kinetic energy
between the two degenerate states which are centered at the neighboring sites:

ty = (Mad)™ =to| < XuolX@uarazys > [F ~ te(wo/Q)"/>. (10)

Accordingly, M, ;/m, for small QP is large due to the mismatch of the oscillator
frequencies which correspond to the occupied state (2) and to the empty state (w).

Ln(R/t,)
z2=1/2

F S(a)

FIG. 2. An analysis of the model Eq. (1). zis the tangent of

S8) the corresponding slope of the curve. The domain F—a free

electron (M.q = m,); The domain L—large adiabatic QP; in

(R /woj the regipn L(a) an adiabatic a}pproximation is .valid for 'the

calculation of M ;. The domain S—small QP; in the region

L(8) S(a) for the calculation of M, the electron’s kinetic energy

can be treated as a perturbation. In the regions L(b) and

S(b) we did not obtain M_ ;. It requires information about
the fine details of a wave function in the polaron’s tail.

z==1-4/D
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Note that the effect of quadratic coupling on the transition amplitudes of the molecu-
lar excitons was discussed in Ref. 9.

It can be shown that the above calculation is correct only for #2/w,Q <1, i.e., it
fails if w, is too small. Although at z, < (1 the electron visits the neighboring sites very
rarely, it still could disturb the states of the oscillator if they are soft enough.

In summary, we were able to find M,; for a large adiabatic QP and a small
antiadiabatic QP, for not too small @, (Fig. 2). Such a restriction on w, does not
appear if one is interested only in the static characteristics of QP (polaronic shift,
etc.), which are determined by the core. In contrast, M ; is governed by “exotic”
parts of a polaron, where the system’s wave function cannot be factorized, and where
all the known methods fail.

We are indebted to E. I. Rashba for valuable discussions.
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