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A relationship is found between the semiclassical limit of the conformal-block
equations in a 2D conformal theory and special 1D versions of quantum
mechanics.

Morozov et al.' have suggested an analogy between rational 2D conformal field
theories and the “quasiexactly solvable” problems of quantum mechanics which were
recently discovered.”* Morozov et al. hoped that it would be possible to find some
entities in quantum mechanics which have the meaning of conformal blocks, structure
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constants of an operator algebra, and a spectrum of conformal dimensionalities. In the
present letter we derive exact relations between (on the one hand) exactly solvable
problems and quasiexactly solvable problems and (on the other) three- and four-point
conformal blocks in a theory with a zero vector at the second level.

Let us review some information about exactly solvable and quasiexactly solvable
problems which we will need below. These cases are distinguished by the circumstance
that they can be described in a natural way in terms of the SL(2,R) group.” Specifi-
cally, the Hamiltonians of special versions of quantum mechanics are of the form

H = CypJ®J® + C,J%, (D
where C,, and C, are constants, while the J¢ are the generators of SL(2,R) in the
differential representation:

d
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Here ¢ is the variable of a group manifold, and j is the spin of the representation. In
differential form, Hamiltonian (1) becomes

H= Q4(€)‘—,‘% + Qa(e);g + Q3(¢), (3)

where Q, (&) is a polynomial of degree n in £ After we carry out the necessary
diffeomorphisms and gauge transformations, Hamiltonian (3) takes the standard form

£
H=—g +Vie), 2= [ 46'/VAE). @)

The condition under which this problem is exactly solvable reduces to the condition
that (3) must be independent of the spin of the representation, j. Then H,, reduces to

d
HCS=Q2(£)-;%+01($)E- (5)

The number of fixed points in the case of diffeomorphism (4) is two for exactly
solvable problems and three or four for quasiexactly solvable problems. For the discus-
sion below, it is convenient to use another description of the versions of quantum
mechanics, which was proposed in Ref. 3. For this purpose, we rewrite the spectral
problem HY = EV in the form

2 K b d K Ca
Q4(8) @-;F;EE‘F‘;F_‘E ¥(¢) =0, (6)

where the spectral parameter is included in C,. The problem of determining the spec-
trum reduces to one of determining the ¢ numbers at fixed values of &, and &,,. After a
gauge transformation, Eq (6) takes the canonical form
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As was shown in Ref. 3, the C,, represent the spins of the representations of SL(2,R),
which specify the potential. For exactly solvable problems we have a = 1,2; for qua-
siexactly solvable problems we have a = 1-3 or 1-4. The spins obey the constraint

D ba=1-12;. (8)

Ushveridze® has also proposed a useful interpretation of the problem of finding the
spectrum: as the problem of finding the equilibrium state of mobile charged particles
(the zeros of wave functions) in a field of immobile dyons at the points &,.

We turn now to a description of the conformal blocks in a 2D theory with a zero
vector in the second level. The condition for the splitting of the zero vector makes it
possible to find a conformal-block equation in the semiclassical limit ¢— oo, where c is
the central charge:

2 1 1-m2 1=
(z;ﬂzfé——*(z_z.-)z*a 25wl =o ®

The conformal blocks are related to y,(z) by

/dt< J.,.(t)Vzl(z)HV(z,) >=[[(= R AN (10)

i<y

where J, (1) is a screening operator, V5, is the null vector, the V;(z) are vertex
operators with classical conformal dimensionalities A, =1(1 — m;}), and y* = 2/3¢".
The neutrality condition leads to the relation

N

d(1-m) =2 (11)

i=1
The topology of a sphere is to be understood in (9).
Comparing Egs. (7) and (9), we can make the identification

1-m,

by = y Dg=—2bs(bs —1). (12)
The classical conformal dimensionality is therefore expressed in terms of the spin of
the SL(2,R) representation. Since the number of poles of the potential in (7) is usual-
ly K =2 for exactly solvable problems and K = 3 for quasiexactly solvable problems,
we can assert that there is a relationship between exactly solvable problems and three-
point entities, and there is also a relationship between quasiexactly solvable problems
and four-point entities, in the conformal theory. The relationship between the confor-
mal dimensionalities and the eigenvalues of the operator J* corresponds to a Sugawara
construction for the Kac-Moody SL(2,R).
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The analogy between (7) and (9) explains the meaning of an operator expansion
in quantum mechanics. An operator expansion of the type

VA;(zl)VA: (22) - (21 - zz)AAl,A:Al_A, VA;(zl) (13)

can be reformulated in terms of a relationship between the wave functions of quasiex-
actly solvable and exactly solvable problems. From the standpoint of quantum me-
chanics, a change in the number of vertex operators in (13) corresponds to a decrease
in the number of poles in potential (7) by one, and the analog of (13) is

. (21,22) = Z o bl:z e Ws(z,). (14)
In other words, the structure constants C ’;, », correspond to the coeflicients of an
expansion of the wave functions of the quasiexactly solvable problem in terms of the
wave functions of the exactly solvable problem. From the standpoint of quantum
mechanics, the operator expansion is formulated in the parameter space of the prob-
lem, so we would naturally expect singularities which would lead to nontrivial Berry
phases (Ref. 7). In our case, the parameter space is three-dimensional, so monopole
singularities arise at the points at which the levels of the Hamiltonian cross, as func-
tions of (&,£,,65). In the picture of Coulomb charges, the structure of expansion
(14) corresponds to different types of merging of charges and to the formation of
monopoles. We might also note that our point of view regarding the operator expan-
sion in quantum mechanics disagrees with the hypothesis offered by Morozov ez al.' —
that the analog of this expansion is a relationship which is trilinear in the wave func-
tions.

Gomez and Sierra® have pointed out a relationship between semiclassical equa-
tion (9) and an equation which determines the “uniformization™ of a Riemann surface
with the points listed above. In this case, (11) plays the role of the Riemann—Roch
relation for 2-differentials on a Riemann sphere. The situation corresponds to j = 0 in
quantum mechanics. A generalization to higher types leads to (8) with arbitrary j, so
one would naturally assume that Eq. (7) has an arbitrary value of j. One can then
algebraically determine the conformal blocks for arbitrary j for the exactly solvable
problems and thus for three-point entities, while for four-point entities one can do this
up to j.

The picture sketched here will be analyzed in detail in a separate publication.
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