Strong-interaction corrections to the Abelian axial anomaly
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The corrections of leading order in the strong-interaction constant &, to the
expression for the Abelian axial anomaly are calculated. The result is
d°J> = (a/4m)FF [ 1+ Cr(@,/7) ] when the normalization of the axial current

is (g5 10y — (gl £1gy"*) = .

Anomalies play an important role in the theory of elementary particles today (see
Ref. 1, for example, as a review). The Abelian axial anomaly, which was discovered
and first studied more than 20 years ago,” leads to a predicted decay width for the
neutral pion which is in excellent agreement with experiment.® Perturbation-theory
corrections to the expressions for the anomalies have recently been discussed exten-
sively in the literature (see, for example, Ref. 4 and the bibliography there). The
Adler—Bardeen theorem® guarantees only that there will be no anomalies in higher-
order loops if none appear in the simple one-loop diagrams. One way to discuss the
anomalies which do exist is in terms of operator relations such as
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where J> = (iiy, ysu — dy,ysd)/2 is the third component of the Abelian axial isotri-
plet, and F,, is the electromagnetic stress tensor. Such a discussion is meaningful only
if the constituent operators j, and FF, which appear in (1) in the corresponding order
of the perturbation-theory expansion, are rigidly defined.

In this letter we are reporting calculations of the corrections for strong interac-
tions to the expression for the Abelian axial anomaly.

A three-point Green’s function satisfying the Bose-symmetry conditions in the
kinematics k% = k3, where k, and k, are the photon momenta, can be expanded in
three independent tensor structures. We choose these structures in the form
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where kK, =p + ¢, k, =p — g, and J, is the electromagnetic current.

From conservation of the vector current, 3“J, =0, we find equations for the
invariant amplitudes F;:

kT (ky, kg) = 0 = & p,q.(¢* 1 + p* Fy -+ Fa}, (3a)

kz,‘T“""‘(kl,kz) =0= "6““‘"ppq,(q2F1 +P2F2 + Fa). (3b)

Taking the divergence of the axial current, we find the equation
PaT# (k1, k2) = €**"ppq, Fs. (4)

We take the limit ¢> - w0, with p* fixed, in (3):
Jim @ Fia,p% pq) = - Fs. (5)

Relation (5) plays a key role in the entire analysis below. It is easy to see that the
amplitude F is finite in the leading order and does not require regularization. Putting
T,,. in symmetric form with respect to u and v and thereby singling out the invariant
function F, from the entire amplitude 7,,,,, we find, after an elementary integration,

lim q2F1 = ﬂ'—z.

q*—+ro0

Using (4) and (5), we then find the correct expression for the anomaly in (1).

We turn now to a calculation of the corrections to three-point function (2) for
strong interactions. The sum of all the two-loop diagrams is finite by virtue of the
Ward identities for the vector current and for the divergent contributions of the axial
current, but there is some arbitrariness in the determination of the finite part of the
axial current in this order in the strong-coupling constant @,. The reason for this
arbitrariness is that there is no symmetry requirement in the specification of this
current, in contrast with the case of the vector current. This arbitrariness also deter-
mines the normalization of the axial current, whose anomalous divergence we are
calculating. In practice, it is convenient to use the Landau gauge and an intermediate
dimensional regularization in order to calculate the two-loop integrals. There is no
need to redefine the y5 matrix. The corrections to the propagator for the massless
fermion are zero in the Landau gauge. We will discuss the calculation of the vertices in
slightly more detail. For example, the contribution to the invariant amplitude F, from
the diagram associated with the correction to the axial vertex is finite in the Landau
gauge; again, we do not need to regularize it. Making use of the cyclic nature of the
trace, we write the expression for this diagram in the form tr[ysI,,,, (p,q) 1, where

Tuvalp,q) = / dkdlS (k—p)7° S (I-p)v, S(i-q)

X VuS (I+p)7" S (k+p)Va Dor (k—1)+(u — v).
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Here S(p) =p ! is the fermion propagator, and D, (k) = (g,, — k k,/k*)/k? is
the gluon propagator in the given approximation, in the Landau gauge. A maximum
of four ¥ matrices can appear in the expression for the integral I',,,,, (p,q). The result is

(167%)2T#**(p, g) = 144(¢*v”v*p§ + (u — v)) + other structures
(it was for the calculation of this result that we used a dimensional regularization,
although the value found does not depend on the regularization at all).

Collecting all the results, we write the following expression for the amplitude Fi:

lim ¢*F, = x~2 %
m q Iy T (1+CF1 N (6)

9?—o0
where 32 _ %1% = Cpl.

Going back to the normalization of the axial current, we consider the amplitude
(q|7> |q), where |g) is the state of the quark in Fok space.

Convolving this expression with y,, we find

,.’a(< qlleq s one loop __ < quzlq >tree) =0.

We hope to discuss phenomenological consequences of result (6) in a separate
publication.
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