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Low-frequency oscillations of the electric field are excited by a steady-state current
in a thin conductor with an open Fermi surface. The effect stems from an influence
of the magnetic field of the current on the dynamics of electrons moving along open
orbits.

When a thin metal plate, whose thickness 4 is much smaller than the electron
mean free path /, is in a static, uniform external magnetic field H,, its electrical con-
ductivity is sensitive to the topological structure of the electron energy spectrum and
also to the surface state of the conductor. Electrons in a metal whose Fermi surface is a
corrugated cylinder with a p, axis move in a magnetic field H = (0,0,H,) along an
open orbit along the x axis in coordinate space. The motion of such electrons in a plate
with specular-reflection faces at x, = -+ d /2 is strictly periodic. The displacement (&)
of an electron along the current direction (the y axis), as the electron moves from one
surface of the plate to the other, depends on the magnetic field. In particular, at a
certain value H,= H, the electron traverses a distance d in an integer number of
periods of motion along the open orbit, #;(H,). The electrons which belong to open
cross sections of the Fermi surface contribute little to the electrical conductivity, be-
cause their drift along the current direction results exclusively from interior colli-
sions.

At high current densities j, the effect of the magnetic field of the current, H;, on
the dynamics of the electrons must be taken into account. In the nonlinear regime, the
electrical conductivity of a plate may either increase or decrease with increasing vol-
tage, depending on the strength of the resultant magnetic field H = H, + H;. There
can be a situation in which an increase in the voltage leads to a change in H; such that
& decreases, so there is also a decrease in the contribution of electrons on open cross
sections of the Fermi surface to the current. On the other hand, the current distribu-
tion is unstable at values of H at which § is close to zero, since slight changes in j and
H lead to an increase in the drift of electrons and thus to an increase in the current
(op ) carried by electrons moving along open orbits. Similar effects should occur in
cases in which the thickness of the shell of open orbits is not too small, and the current
Jop 18 comparable to the current of the electrons in closed orbits. Below we show that a
quasiperiodic dependence of the electrical conductivity on the magnetic field H leads
to an excitation of low-frequency oscillations of the electric field by a steady-state
current.
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To find the current density and the electric potential, we work from a system of
equations consisting of the Boltzmann kinetic equation and Maxwell’s equations. We
assume that the scattering of the electrons by the boundary of the sample is specular.
We assume a dispersion relation

2 4 2
e(p) = p———”z-;p’ + €gcos 5:’:—, (N
where €, satisfies the condition (d //)’¢. €€,<¢€y, wWhere €, is the Fermi energy. A
Fermi surface in the form of a slightly corrugated cylinder is apparently a good de-
scription of organic metals.” If we neglect the heating of the charge carriers, we should
linearize the kinetic equation in terms of the electric field E. The magnetic field is
found from the equation

dH,(z) 4r .
— ———t T2 e Zj.
- —3y(2) 2)
Under the assumptions made above, we can write the current density and the electric

potential as power series in the small parameters €,/€, and (d /1) (ez/€,)"?. The
leading asymptotic term of the current density is

1/2
i) =1L [ d¢ con Z-(44(6) — 44(€)) &)
-1/2

where A,(x) = §3 dx’Hz(x'), I,= (e/€r)’0E,, 0p=eng/m, n,= (meg)’/
4rh3p,, £ = x/d, A(x) is the vector potential, e is the charge of an electron, c is the
velocity of light, 7 is the mean free time of an electron, and # is Planck’s constant. The
constants of integration for (2) and (3) are determined by specifying the magnetic
field H, and by also specifying either the external voltage or the total current in the
conductor, J. A solution of Egs. (2) and (3) is

' 9 4
4,(©) =240 fom (e + & (3.0) ) - 5} @
Here
I.Ho >0
— 8/2
n(HO) = —lHo < 0, K (%,#) — f dt(l_ “2 sin2 t)—]_/z’
0

am({u) is the amplitude of the elliptic integral, § = K(amé,u), Ay,= hyd,
h, = poc/ed is the magnetic field in which the spatial period of the motion along an
open orbit is 27d,

2 ﬂ 2_ 1 H? (0) L 1/2 I
pi= =, Q%= +ﬂn /2 , A=2, (5)
ﬂz 4 h2 ﬂ Jo .70

Jo = chy/4md, and the parameters I and sin(€/2) are given by
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Equations (5) and (6) are transcendental equations which implicitly specify the rela-
tionship between E, and J= Ddl, where D is the width of the plate. This width
satisfies D>d. The distributions of the current density and the magnetic field are
expressed in terms of elliptic functions. They depend strongly on the value of g, which
is in turn determined by the average values of j, (£) and H?(&) over the thickness of
the sample.

Let us analyze the stability of Eqgs. (2) and (3) with respect to small space-time
perturbations of the type

Ay(z,t) = Ay(&) +E(a)e 0, By(o,0) = By +iZa()e e (7

Substituting (7) into (2), (3), and linearizing in terms of the small perturbations, we
find that the function a(x) = a(x)exp(ikx) satisfies the Hill equation

dZae(zf) - ["“’P" :gy sin A1 (£) + Bcos Ax(ﬁ)] a(),

A3(6) = 2am{n(Ho) ¢ + K(3, ), ). ®)

We find the relationship between the frequency w and the wave vector & by setting the
Hill determinant equal to zero. If g is not too close to one, we can find explicit
expressions for @ as a function of & in the form of power series in the small parameter
¥ = exp( — 7k):

4nsin 2w/ Fy

+0 (wo exp (—mc (%))) , 9)

[sin2 (2K 1 : kd) ~sin® 7 Fo] . 1
w2 = wg COSh2 (~2—K. (;)) \/ Fo(4Fo - 1)

where

-2 e () (5() () o= ()
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B = [ dn/1-@sinte, xlg) = K(VI-)/K(a)

for p>1 and

sin? ( K(&)k4Y | sinh? n/T,
w? = —w3 [ (#5) °]\/\170(4wo+1)
wsh2my/ Vo

1

= lcosh®(nxk w2 exp(—2mrx
sinhZ(m(p))} (k) + Ofwg exp(~2mx(u))),

(10)

where W, = /7 [2k* (1) — K () —2E(u)K(u)], for u<1. If x=1, then
y=43%x1072.

There is a broad range of values of J, d, and H,, in which the oscillation frequency
in (9) is real and lies in the range 10°-10° Hz. At u < 1, the frequency in (10) is
imaginary, and no oscillatory processes occur. If there is no emission of electromagnet-
ic waves into the space outside the plate, then the thickness of the sample, d, must be
equal to an integer number of half-wavelengths: k =7n/d, n= + 1, +2.... The
oscillations arise at current densities at which the quantity (11 /j,)/* reaches a value
on the order of one. A consequence of the strong nonlocal effects, which are manifest-
ed by a dependence of the modulus () of the elliptic functions j, (£) and H(£) on
their integrals over £ [see (5) and (6)], is a pronounced sensitivity of the current
distribution to changes in the magnetic field strength. Equations (5) and (6) show
that the H; dependence of 4 must also be taken into account in the case H; < H,. At a
given current J, we can work from the condition m > 1 to estimate the maximum value
of the external magnetic field at which oscillatory processes can still occur:

Hy <\2(A1/jy) R,

The nonlinear effect discussed above weakens with decreasing value of the specu-
lar parameter p, but it remains substantial at > d /1.
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