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The magnetoresistance of a 2D electron gas in a superlattice of antipoints has been
studied. Oscillations observed in weak magnetic fields occur because the Larmor
radius is equal to the period of the superlattice. Two periods of the quantum
oscillations are observed in strong fields.

Two-dimensional electron systems with a spatially modulated electron density
have recently attracted interest. Extreme cases of these systems, with a 100% modula-
tion, are (a) a system consisting of isolated points cut out of a plane of a 2D gas and
(b) a system of antipoints, at which the density of the 2D electrons vanishes. A
periodic lattice of antipoints produced in a system with a 2D electron gas has a super-
lattice potential of a unique type.”? On the one hand, this is the infinitely strong
repulsive potential of the antipoints themselves. On the other, it is a weakly modulated
periodic potential which arises because of the rise of the barrier in the constriction
region between antipoints. The combination of these two types of potentials can lead
to such interesting phenomena as a binding of quantum points into molecules® and
Aharonov-Bohm oscillations.? In the present study we have observed some new oscil-
lations in the magnetoresistance. The behavior of these new oscillations is determined
by an effect of the potential of the antipoints on the properties of the 2D electron gas.

A periodic lattice of antipoints was prepared by electron-beam lithography and
reactive ion etching on GaAs/AlGaAs heterostructures.* For sample N1 the period of
the lattice was d =1 um, and the diameter of the antipoints was a = 0.3 um. The
corresponding properties of sample N2 were d =0.8 ym and @ =2 pm. The first
sample was square. The second was a Hall microbridge, at which the antipoints cov-
ered part of the sample between the potential probes.

The introduction of the antipoints reduced the electron mobility in a zero magnet-
ic field by a factor of 8 to 10 for structure N1, and by a factor of 12 for N2. The
mobilities of these samples were 60X 10° cm?/(V-s) and 20X 10° cm® (V-s), respec-
tively. The mean free paths found from these values turned out to be slightly smalier
than the distance between antipoints.

The samples were illuminated continuously by a red light-emitting diode during
the measurements. The intensity of this illumination had a negligible effect on the
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FIG. 1. Magnetoresistance of a sample with antipoints versus the magnetic field (structure N2, 7= 1.3 K).
The inset shows the same curves at a higher sensitivity. 1-—Structure N1; 2—N2. The solid arrows shows
the maxima of the oscillations; the dashed arrows correspond to the change in slope on the curves.

electroresistance, but it significantly changed the shape of the curve in weak magnetic
fields. There was a certain optimum illumination level for observing oscillations in
weak magnetic fields.

Figure 1 shows the magnetoresistance of the samples in the weak-field region
(below the point at which Shubnikov-de Haas oscillations arise). At B <0.2 T there
are two oscillations, with maxima at positions corresponding to the level 2R, = nd,
where R, is the Larmor radius, and # = 1,2 (see the inset in Fig. 1). Just recently,
Weiss et al.® have observed similar oscillations. The region of a negative magnetoresist-
ance observed on sample N2 may be due to a suppression of the backscattering of
quasiballistic electrons in a magnetic field.® When the magnetic field reaches the value
at which the condition 2R, = d — a holds, the electron orbit becomes smaller than the
distance between antipoints, and an electron localizes, tracing out rosette-shaped tra-
jectories near an antipoint.” In this case we would expect an increase in the resistance
of the sample with increasing magnetic field. The change in slope on the magnetore-
sistance curve for sample N2 in Fig. | can thus be attributed to that effect. Unfortu-
nately, the size a is not known accurately, because of the depletion regions near the
antipoints. However, if the suggestion made above is correct, this size can be found
experimentally. An estimate from the formula 2R, = d — a yields a value g = 0.34
wm. Using the geometric size @ = 0.2 um, we find the width of the depletion region to
be = 0.07 um. This value corresponds to data in the literature. Using this value, we
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can predict the position of the change in slope for sample N1. It is shown by the
dashed arrow in the inset in Fig. 1.

This slope change on the magnetoresistance curve constitutes the first observation
of a localization of electrons near an artificially produced scatterer. This observation
opens up the possibility of studying electron localization in a system of scatterers with
controllable parameters.

With further increase in the magnetic field, we find the usual Shubnikov-de Haas
oscillations, but at B> 1.5 T some new oscillations appear (Fig. 2), with a second, and
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FIG. 2. Quantum oscillations in samples with antipoints; positions of the oscillation minima versus the
magnetic field. a—Sample N1, 7=0.2 K; b—N2, =13 K.
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FIG. 3. Rough sketch of the potential in a system with antipoints. Saddle points and contour lines passing
through them are shown. The dashed lines are other equipotential lines. The system of antipoints is shown at
the bottom; shown at the right is a rough sketch of the density of states in the Landau band.

smaller, period in the reciprocal of the magnetic field. These oscillations cannot be due
to an inhomogeneity of the sample, since if they were, the two oscillation periods
would exist over the entire magnetic field range. For the sample with the lattice period
d = 0.8 um the oscillation picture changes fundamentally (Fig. 2): The oscillation
period is disrupted, and in strong fields the deep minima have a second period, while
the oscillations with the old period gradually fade away.

The reasons for the appearance of this second period of the quantum oscillations
are not completely clear. One possibility arises from a consideration of the superlattice
potential of the antipoints (Fig. 3). The periodic potential spreads each Landau level
out into a band, whose width in strong fields is equal to the potential ¥ (Ref. 8). The
density of states in the Landau band has structural features associated with singular
points of the periodic potential (Fig. 3). One of these points corresponds to an energy
minimum and leads to a jump in the density of states. The saddle points lead to
divergences of the density of states in the upper part of the Landau band.” In relatively
weak magnetic fields, the conductivity oscillations are due primarily to states corre-
sponding to a point of divergence. As the field is raised, however, states belonging to a
minimum of the periodic potential come into play. Since the conductivity is deter-
mined not only by the density of states but also by the relaxation time, one may
observe different situations, in which the conductivity has minima associated with
either one or both of the singularities in the density of states in the Landau band. From
the difference between the periods we find the width of the Landau band to be V' = 1.4
meV.

In summary, measurements of the magnetoresistance of 2D electrons in a system
with antipoints have revealed two different periods of th quantum oscillations. These
two periods correspond to two groups of carriers, which move along different trajec-
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tories in the periodic potential of the antipoints. The contribution of these groups to
the conductivity depends on the lattice period and the strength of the magnetic field.
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