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Itisshowntheoreticallythatwhenacurrent.Iflowsthroughpartofaconductor
with a charge-density *"u" un electric field and a voltage arise in a region in which

no current is flowini. If l exceeds the threshold pinning current, domain walls-

phase solitonr--ulb" "reated at the boundaries of the region in which the current

flows.Theseefiectsoccurbecauseamovingcharge-densitywaveisdeformedinthe
region with 1:0'

1. Considerable interest has recently been attracted to efects accompanying a

current flow in a quasi-l-D conductor with a charge-density wave' In particular' it has

been found that measurable quantities (such as the voltage and the current) depend on

the positions of the measuring contacts and those which conduct the current't-3 Laty-

shev er al. (see the preceding paper) have recently observed the appearance of an

electric field E outside the cuirent-now region (Fig. l). They used filamentary samples

with diameters up to several microns. A current l was ;iassed through contacts 2 and

3, while the voltages vik (i, k specify the contacts) were measured between current

contacts 2, 3 and outer contacts l' 4. It was found that voltages Vr', and Vro arise at a

FIG. 1.
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current above the threshold current for the pinning of a charge-density wave; these
voltages are comparable in magnitude to V* and opposite in sign.

Let us analyze the current flow in a conductor with a charge-density wave in the
geometry of Fig. l. We will show that the particular response of the phase of the
charge-density wave to the electric field leads to results in qualitative agreement with
the experimental data. Furthermore, we will predict some effects which can apparent-
ly be observed in future experiments (for example, the creation of phase solitons at
contacts 2 and 3\,

Since we will ignore the suppression of the energy Eap A, it is sufficient to use
only the equations for the phase (X ) of the charge-density wave and the current L We
use the results of the microscopic theory of Ref.4. At low temperatures (T<A), and at
a Fermi-surface curvature small in comparison with y', the equations can be written

- : r ' + \ , v = s 1 ( l )

(21I=Io+ o**lr , (+ - ",#) ro= xo*af ,

where D : ul is the diffusion coefficient, / is the mean free path,

trr :Cr*."p( -A/T) isthecoeff ic ientof f r ict ionof thecharge-densitywave,r)1n is'  ' T

the quasiparticle current, Dr: Cr(+\t" o, , ^ / r\ / T\
-\a / 

' : ' ,1;) '"p( 
i), 

o. is the con-

ductivity in the normal state (i.e., with / :0), and the coefficients Cr, Cr, and C, are
numbers on the order of unity. Equation (2) was derived from the quasiparticle diffu-
sion equation (within a numerical factor) by replacing the energy-dependent diffusion
coefficient D (e) by an energy-independent coefficient Dr. In the limit of a steady-state
field E, or a field which is uniform over space, this equation is exact in the models of
Ref. 3.

It should be kept in mind that Eqs. (l) and (2) contain the x components of the
current density and the field averaged over the cross section of the conductor, so that
wb have I (rl:\ j,) : I0 (a - lxl)' whete 2a is the distance between contacts 2 and 3.

2. Let us assume that an alternating current lltl:1. exp(-iattl is flowing
through the conductor. The spatial profile ofthe phase ofthe charge-density wave can
then be found easily from (1)-(2)and the continuity of the phase and its derivative at
points 2 and 3:

x@ = - (IeU i@oN)t t 1 - e- {a cosh(t.r)l0 (a - lr f)

( l _  e - z x a y ( a  
-  t x l ) x 0 ( l x l - a ) ) , .

where dll : - ioDz and Dr: ). D /2 | D1=D1. Using (l) and (2), we can
distribution of the field E.(xl and calculate the voltages V4, Vp: V'a, and
find

I
+ -,)

find the
Vro. We
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V o
Vzs=Vo[(D l?Dt)f + Ir( l  -/)]  i t  Vrz, = 

17[trr 
- Dl2Drl, V1a= ]\Vs ,

where

Vo=?aI. lo* f = (l - e- 2*.4)l (xa).

At sufficiently low frequenCies wehavef=2. Since2, is small, we find vzt:volD/

Dr\= -V.":--(Vrr*Vro\in this case. The total voltage Z,o is thus small in com-

parison with both Vrrand the external voltage Z"*, which cancel each other out to a

iarge extent. We might also note that the voltage V* is quite diferent from the voltage

which would prevail during the uniform slippage of a charge-density wave. The latter

voltage is the iame as Y ro. The dashed curve in Fig. I is a sketch of the field distribu-

tion E.(xl. The depth to which the field E. penettates into the regions (1,2) and (3'4),

Lt@l=Wu decreases with increasing ar.

The results of this section apply at Yo4A and when pinning is ignored. In the

high-temperature limit, ?" >/, these effects are small, on the order of the parametet A /

T.
3. When the current through contacts 2 and 3 is a large square pulse, the field

distribution is initially as shown in Fig. l. There is an increase in the distance Lt to

which the field E penetrates and over which the velocity of the charge-density wave is

nonzero (x *o\;the voltage v.^ also increases. The subsequent evolution of E and y

depends on the current 1.

At a large current I or alarge distance a such that the condition

A r T f ' '
I  )  I ,  -  o n ; \  

O )

holds, an increase in the phase gradient 0y /0x leads to a suppression of the gap A at

points 2 and 3. This occurs when - v"*=v4-A, when the electric field penetrates a

iirtun". (o*/I)A\T/Aft2.In this case, phase-slippage centers arise in the system,5

accompanied by nonlinear oscillations of / and a which cannot be described by Eqs'

1 l )  and  (2 ) .

Il on the other hand, the current.I or the distance between the current contacts is

small, so that condition (3) does not hold (but the condition 1y-f. does, where 1t is the

threshold current for pinning), then perturbations ofE and y propagating away from

contacts 2 and 3 begin to ,rrppt".t each other after a time on the order of a2/Dr, and

the field D begins to decrease in magnitude, in proportionto l/rft , propagating ever

further from contacts 2 and 3. The voltages reach a steady-state value

- V.* zVx : Vo(A /T)'tt, Vrc: I tYo. The decrease in the field E and its propagation

in r.gionr li, Z1 anO (3, 4) continue until the distribution becomes fixed by pinning.

4. To take the pinning of the charge-density wave into account we adopt a very

simple model, which can be defended rigorously in the case of a commensurate charge-

aensity wave. Specifically, we add to the left side of Eq. (1) a term Eol sinny, where

Eol - A (a /e p\" 
- z 

, and n is the order of the commensurability. cleaily, in the case of

an alternating current we can ignore the pinning if aAr>Esl. What are the conse-

(3)
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I
quences ofincorporating pinning during the flow ofa direct current.I? Ifthe current is
weak, the phase is perturbed in region (2, 3), and it falls to zero as .x--) + oo over a
characteristic distance L (L :,\DWJ is the size of the phase soliton; the increase in
the length with decreasing temperature is due to screeninga). In this case we find for
V'�r1 : VJA)ll - (l/2lf(a/L)1. Under the condition a/L we thus have VB: vs,/J.,
while at alL wehave Yrr:(vJA)(a/L); i.e., there is a change in the temperature
dependence of the conductivity I /vB. The voltage vro is again related to the current,
as in the homogeneous case, vp=Yril". with increasing d the static deformation of
the charge-density wave increases, and at a certain threshold current 1. there is no
static solution for y, which is unperturbed at infinity. At I > Ir there is a static solu-
tion in the form of domain walls: a chain of phase solitons whose period depends on
the difference I - Ir. At currents slightly above the critical current, the chain forms
through the sequential creation of solitons at points 2 and 3 and their propagation
away from these points. It is easy to derive an expression for I, : (2L /ap"oyEo for

a 11 L n I, = ),or.E'6It+24K4ehn) &Haj
for abL. At high currents, IyIr, the oscillations of the phase x over space become
progressively weaker, and the spatial dependence of x approaches that of a static
solution of the diffusion equation, X' : const.

We thank Yu. I. Latyshev and V. V. Frolov for furnishing their experimental
results and for a discussion.

r)The coefficient,l, is small because the friction experienced by the charge-density wave results from the
presence of excitations above the gap. If other possible friction mechanisms-in particular, states in the
gap-were taken into account, ,i, would increase.
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