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An expression is derived for the viscosity coefficient due to plasma
microturbulence. The corresponding drag, which is proportional to the energy
lifetime, can explain the anomalously rapid decay of plasma rotation in a tokamak.

During the oblique injection of particles
umn is observed to go into rotation in the
injection ends, the rotation velocity rapidly

into a tokamak plasma, the plasma col-
toroidal direction.r'2 When the particle
decays. The decay time cannot be ex-
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plained by the neoclassical theory. At present' the most likely mechanism for the

becay of the rotation seems to be friction with the neutral gas. Again in this case,

however, the theoretical decay time is several times longer than the experimental time.

Furthermore, this mechanism runs into difficulty with the experimental fact that the

decay time is on the order of the energy lifetime of the plasma'

In the present letter we wish to propose a possible slowing mechanism which

involves the anomalous viscosity of a tokamak plasma. This viscosity emerges in a

natural way from the system of equations recently proposed in Ref. 3 for a self-

consistent description oftransport processes in a tokamak. The expresion derived here

for the slowing time is proportional to the energy lifetime'

The system ofequations ofRef. 3 consists ofan equation for a generalized vortex,
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and po is the plasma density; the continuity equation,
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and Ohm's law,
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where the operator q : i- t represent the resistivity of the plasma, and the operator d

represents the conductivity.3 Equations (l)-(3) could be supplemented with an equa-

tion for T",blt we will not need it here. Although only the velocity component v,

app€ars in these equations, they can be used to describe the toroidal rotation. The

poioidal rotation is slowed in a time ro-(\lt r/,1'lpJtt((B'9 B/Bo)2>1, which is

considerably shorter than the time (r, over which the toroidal rotation is sloweda ( p is

the neoclassical viscosity coefficient, and the angle brackets denote an average over a

magnetic surface). At times t*ro,the poloidal components v,1 and vr cancel out to

witf,in terms proportional to t T, andBqs. (l)-(3) can be used to describe the toroidal

rotation.

The term (B,9 )1,, in Eq. (2) was shown in Ref. 3 to give rise to a plasma difusion

across the magnetic su.fu""r with a difusion coefficient given in order of magnitude

by D-(c2u"/a2p"QRleo (1<a(2), when the finite conductivity is taken into account.

\V".rot" that eiactly the same term, (8,9 lAlfi, appears on the right side of vortex

equation (l). The case of no average macroscopic rotation velocity was studied in Ref.

3. When there is such a velocity, a vorticity flux proportional to the vorticity gradient

appears on the right sides of (l) and (2). We will demonstrate this point for the simple

case of a plasma of homogeneous density and temperature (when gradients of n and T
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are taken into account, terms proportional to ? n and ? I are incorporated in the
fluxes in a simple additive manner; see Ref. (3). As in Ref. 3, we introduce the toroidal
surfaces @: const, which move with the plasma:

a O  c
* -  +  [ e , , V 9 ] ' V O = 0 .  

( 4 )
a t  B o '  "

We initially place magnetic lines of force on these toroidal surfaces: 8.9 @ : 0 (t:0).
At subsequent times we then have, as was shown in Ref. 3,

d t d l c
-  (8 ,9<D1= [9 iA , , l t ,VO]"  ;  ; :  =  - : r+  =  [e , ,  Vd ] .  V  .  (5 )

dt dt ot 66

We can now calculate the change in the vorticity in the volume bounded by a surface
@ : cOnSt:

a a r d v lJ -  l t a V  =  I  ;  d V +  l l v . d s :  J ( B , V ) A ,  r l ,  +  =  -  I  \ * B ' d s .  ( 6 )
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In the differentiation in (6) we made use of the circumstance that the surface
@ : const itself undergoes a displacement over time in accordance with (a). The inte-
gration in the last integral in (6) is carried out over a surface @: const. Using
as: ffO tllO las and (5), we can rewrite (6) as follows:

a
^ ! | dY =-t II ds, (7)
dt

where I/ is the vorticity flux out of the volume bounded by the surface @ : const:
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For small fluctations and nearly cylindrical average surfaces, this flux has only aradial

component and is given by

n = -1-' ' , ,,,,r,1^8,(r,)0r,. (e)
4rqo --*' i l  

'  
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We have rewritten Z in terms of more-graphic quantities: the current j , : (c/4trlA ,tlt
and the electric field E11 :ifrll .In a calculation from (9) we can use the quasilinear
approximation and express/,, -.811 in terms of Q and then in terms of the plasma
displacement {:(ckr/Ba)g. As a result, we find

n d
i l =  i | a , v ,  ( 1 0 )

clx

where i is the kinematic turbulent viscosity, which can be expressed in terms of the
displacement f as follows:
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Comparing this viscosity coefficient with the electron thermal diffusivity, we find

A m,  =  
, r ,

(r2l

( 1 3 )

The vortex equation

d f
oo a, 

= (B' V)i

then becomes

+ vrv . r )
where ft : poi.The last term in (13) describes a difusion of the vorticity due to a

small-scale lk-(ao"/c)l turbulence. The corresponding rotation decay time r, is relat-

ed to the plasma lifetime rE" bY

M
T9 = TEep - (14 )

For the PDX device we find the estimate rt'" = 100 ms, which agrees with the experi-

mental valuie flP'=8G-l00,us (Ref.2). For the PLT device we would have

zf""=80ms in comparison withr t*$e'=20 ms. In view of the approximate nature of

eipression (14), we judge the agreement to be satisfactory in this case also.

An interesting aspect of expression (14) is the strong density dependence (-n'1.

The decay time actually depends on the self-consistent profiles of the density, velocity,

and temperature, which may cancel out the -n2 dependence'
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