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A nontrivial dimensional reduction of an N = 1, d > 4 Yang-Mills theory which
leads to a spontaneous symmetry breaking is accompanied by an activation of
central charges in the algebra of the expanded supersymmetry in d = 4, so that the
associated masses of the supermultiplets do not acquire quantum corrections.

The incorporation of central charges in the algebra of an expanded supersym-
metry is a systematic method for introducing masses in supersymmetry theories with-
out increasing the dimensionality of the representation.’ On the other hand, theories
which are invariant under an expanded supersymmetry with central charges can be
found by means of a nontrivial dimensional reduction.? Our purpose in this letter is to
show that the masses obtained in this manner do not acquire quantum correction, i.e,
are stable. Serious arguments for this possibility come from the results of explicit
calculations of the single-loop corrections to the monopole mass in an N =2 Yang-
Mills theory in d =4 (Ref. 3) and indirect arguments* based on an analysis of the
dimensionality of the massive representations of the supersymmetry. We have proved
that there are no quantum corrections to the mass in d = 2 by explicitly carrying out a
dimensional reduction by a diagram technique of the supersymmetry of the CPV ™
model.’

962 0021-3640/84/170962-03$01.00 © 1985 American Institute of Physics 962



We restrict the present letter to an analysis of the simple d = 4, N = 2 Yang-Mills
system with the gauge group SU(2). This model is known to correspond to an N =1
Yang-Mills system in d = 6, formulated in superspace in terms of superconnected-
nesses 4, ={4,,, A,), which satisfy constraint conditions that can be resolved in
terms of independent prepotentials V;(x,,,0,4)ij =1, 2 (Ref. 6). The representation
Vi= V- (x,y,6%, é ') is convenient for the subsequent reduction d = 4, where 8*' and
6 & are Weyl spinors with 7, j = 1, 2. In the noninteracting case, the 4, !, are expressed
in terms of the V,J and the covariant supersymmetric derivatives Da,, D in closed
form; in the g#0 case, they can be expressed as a series in g. The tr1v1a1 reduction
6—4[V;(xVy, ...)=V;(x"¥, ...)] leads to a superfield formulation of the N =2
Yang-Mills system in terms of N = 2 superfields. This description makes it possible to
demonstrate the nonrenormalizability theorem by a background-field method and to

show that the theory contains only a charge renormalization.”

We carry out the nontrivial reduction V (%Y, and .. )=U(y)WV(x, ... )U ~y),
where U(y) = expiy, A4, [.#,, #,]=0 (Ref 2). In th1s spinor basis the covariant
derivative is written D& =3/96% + i(#0),; + €.p€,;6%(0/3y, + i0/dy,), where
d=d,0". In our case, on the other hand upon the trivial reduction d /dy; =0 and
D“”——»D 5 the derivative D ) becomes D, =D +ic,,e;,07(( M, —ity),...] The
derlvatlves D and D/, satisfy an N =2 supersymmetry algebra with central charges,
which are reahzed as operators of an associated representation of the SU(2) algebra:
[#,,...] Now replacing D ® by D in the expression for the total action ( which also
includes ghost sectors),” we find a Yang-Mills theory which is invariant under the
N = 2 supersymmetry with central charges. In this approach, all assertions regarding
the renormalizability of the theory on the basis of the background-field method remain
valid; i.e., there is a unique renormalization constant. We wish to emphasize that no
additional renormalization of any sort is required because of the introduction of the
new dimensional parameters .#;, since .#; is present only through D in any of the
expressions. As a result, the invariance of the renormalized action under the super-
symmetry remains the same.

The meaning of the parameters .#; can easily be seen by performing a reduction
in the quadratic form Tr{1/4(3,4,(X,y) — 3,4, (x,y))* +i/2- gb(x,y)&tp(x,y) of the
physical fields in d = 6. Here we have 3 ©—(@®, i[.#,, ...), i[.#5, .. .)), and the effect
is to generate a spontaneous breaking of the SU(2) symmetry. As the result, we find a
charged massive N = 2 vector supermultiplet with a mass M = |.#|* 4+ |.#,|* and a
dimensionless vector supermultiplet. As expected, the massive multiplet realizes a
(complex) representation of the N =2 supersymmetry with central charges.'® This
realization of the Higgs mechanism is equivalent to the choice of nonvanishing vacu-
um expectation values for the scalar fields along the planar directions of the indifferent
potential Tr{[4,,4,]}? of this model.! The Higgs mechanism can be implemented in a
nonsupersymmetry theory in the same manner, but in the case of the 6-—>4 reduction
for a Yang-Mills theory the massless boson fields (vectors + scalar) lead in d =4 to
nonremovable infrared singularities. In the supersymmetry case, on the other hand, it
follows from our explicit analysis® in terms of N = 1 superfields that the Higgs phase is
free of infrared singularities off the mass shell, so that both the diagram technique and
the renormalization procedure are correct.
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We thus see that the parameters of the supersymmetry transformations which
have the meaning of masses are not renormalized. Furthermore, the renormalized
effective action found by this diagram technique conserves the supersymmetry with
the same values of the parameters .#; as for the seed; this is direct proof of the
stability of the masses. A generalization of this reduction method to the case of a
Yang-Mills system which is interacting with N = 2 mass fields (hypermultiplets) leads
to no fundamental difficulties. It should be noted that the central charges in this case
can be realized in different ways on different & =2 supermultiplets and that their
masses will generally be different. Although the reduction question for a d = 10 Yang-
Mills theory is more complicated, it can be expected that a corresponding result for it
will also be found.
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