Excitation of random waves in a nonlinear chain

A. S. Pikovskil
Institute of Applied Physics, Academy of Sciences of the USSR

(Submitted 17 April 1984)
Pis’ma Zh. Eksp. Teor. Fiz. 40, No. 6, 217-219 {25 September 1984)

Numerical simulations are reported on the randomization of a wave field excited
by a periodic point source in a matched line which models a semi-infinite nonlinear
chain. If the source amplitude is sufficiently high, almost perfectly stochastic
waves are excited.

Random oscillations in nonlinear systems with a small number of degrees of
freedom have now been studied in some detail.! The ideas that have been advanced can
also be applied to certain problems involving the randomization of nonlinear wave
fields, but the situations that are being discussed here (random steady-state waves,’
waves which are random only in space® or only in time,"* and random regimes in
distributed bounded systems>) are not fundamentally different from lumped models.
In the present letter we describe the randomization of a wave field in a system which
models an infinite number of degrees of freedom.

We consider a semi-infinite nonlinear medium at whose boundary a periodic
external source is operating. A problem of this type arises, for example, in studies of
the effect of intense, steady-state electromagnetic waves on a plasma and in studies of
the propagation of laser beams through crystals. As a specific model for the numerical
simulation we adopt the nonlinear chain described by the Hamiltonian

. 1
H(pi,qi,t_)=q1Acoswot+ i Lz W,? +ql? + —'q;-‘ +D (qiz - ql?_ 1)] (1)
2ix 1 2
with the boundary condition g, = ¢;. The first term in this Hamiltonian corresponds
to an external force of frequency @, and amplitude A4, which is applied at the boundary
i = 1. Hamiltonian (1) is a discrete analog of the ¢ * Hamiltonian in field theory, which
leads to the nonlinear Klein-Gordon equation. The spectrum of linear waves in chain
(1) is continuous:

w? (k)=1+2D(1 — cosk), 0Lk .

For the simulation of the semi-infinite medium in the calculations, we add to a
bounded segment of the chain (1<i<NV) several elements in which we introduce a
damping. As a result, the waves which propagate in the region /> N are damped and
are essentially unreflected (the linear standing-wave ratio is less than 3%). This meth-
od clearly shows that “from the standpoint of the source” a conservative infinite
medium may be regarded as dissipative. In particular, the steady-state regime does not
depend on the initial conditions.

The numerical simulations were carried out for N = 150, D = 20, and @y =27/3
at various amplitudes of the external force, 4. At small values of 4 (4 S 30) a traveling
periodic wave is established in the chain. At 30 4 570 we see a regime with a slight
tendency toward a stochastic situation. A periodic wave is excited near the i =1
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FIG. 1. Distribution along the chain of the fraction of the power in the oscillation spectrum of the particles.
1—A4 =25; 2—4 =40; 3—A4 = 65; 4—A4 =T5.

boundary. In the course of the propagation, the periodicity is disrupted, and a random
component arises. Also during the propagation, the interaction of the regular wave
with the noise (the random component) causes the noise intensity to increase.” It can
be expected that far from the source (i— oo ) the wave field will become totally random:
All the energy will be transferred to the random component. At 4270 we see a
different situation. Here the randomization of the waves occurs even in the near field
of the source. As a result, an almost perfectly randomized wave field forms at a short
distance from the source. The situation is illustrated by Fig. 1, which shows the distri-
bution along the system of the fraction of the total power in the continuous spectrum.

Let us briefly discuss the statistical properties of the random waves excited in the
chain. Figure 2 shows the distribution function of the chain at the point i = 140 for
A =75. It is nearly a normal distribution. Figure 3 shows the power spectrum of the
waves at the same point. This spectrum is continuous and roughly constant over the
interval w,<w <w,,, where w, is again the frequency of the external force, and
®,, =+/1 + 4D =9 is the maximum frequency of the linear waves. These results may
be interpreted as follows: The energy of the source is distributed uniformly among the
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FIG. 2. Histogram of the displacements of the 140th element of the chain for A4 = 75. The curve is a normal
distribution with the same mean and the same variance.
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FIG. 3. Power spectrum of the oscillations of the 140th element of the chain for 4 = 75.

wave components lying in the transparency band of the chain, and these waves may be
regarded as independent.

Let us summarize the results of this study. For the particular case of a chain of
nonlinear oscillators it has been shown that excitation of an infinite nonlinear medium
by a point source can lead to the excitation of random waves. Two routes for the
transition of the waves to a stochastic state can be identified. The first is a randomiza-
tion in the course of the propagation. This type of randomization apparently does not
operate if the nonlinear medium is described by integrable equations or if the waves
decay quite rapidly with distance from the source (because of damping or because of a
divergence in a 2D or 3D medium). The second and more effective route to randomiza-
tion, but one which is seen at high amplitudes, is a randomization of the waves directly
in the near field around the source. In this case waves, whose spectrum contains a
continuous component, propagate in the medium. In the course of the propagation the
intensity of the noise component rises because of the nonlinear interaction, and at large
distances from the source we see an essentially completely random noise field.
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