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A new model is proposed in which the amplitude required of the initial

perturbations arises in a natural way.

Theories with inflation are presently the subject of active research.'~* Inflation is
required to solve several cosmological problems, among them causal connectedness,
planarity, the monopole problem, homogeneity, and isotropy. During the decay of the
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inflation stage, the quantum fluctuations of the scalar field grow and give rise to the
inhomogeneities in the universe which are responsible for the formation of galaxies.
This property is a major improvement of the inflation scenario, since previously the
initial-perturbation spectrum had to be worked into the theory “manually.”* However,
the perturbation amplitude in the ordinary grand unified theories is too large to satisfy
the observed isotropy of the background radiation.>~” Other versions have also been
proposed.*"* All the models proposed in Refs. 8—12 were criticized in Refs. 13 and 14.
Here we will mention only the major features of these models, which make it possible
to achieve the necessary perturbation amplitude.

To find the amplitude and spectrum of the perturbations, we need to study the
dynamics of a one-component scalar field ¢ with a self-action Ag * or Afig . In order to
obtain the required perturbation amplitude, we require that the dimensionless con-
stants A and A (or /My, where M,, is Planck’s mass) be extremely small, e.g.,
A S107'2 In general, the introduction of such small dimensionless constants in the
theory requires a special explanation.

One possibility is related to the supersymmetry theories,®® in which the effective
coupling constant A (@) is small because the contributions of bosons and fermions can-
cel out. The typical perturbations that arise during the phase transition, however, are
too small.® To obtain the necessary perturbations, we need to incorporate in the theory
some very small constants, on the order of 1078-107°, but this is an unnatural ap-
proach; furthermore, there is the problem of heating after the phase transition.'>'

In Refs. 10 and 11 the coupling constant A is the square of some other dimension-
less constant that is initially introduced: A, ~ 10~°, again exceedingly small.

In the models based on an N = 1 supergravity which is interacting with mat-
ter,'213 the interaction constants satisfy A, 4 « (/M ,)°, where i is a constant that has
the dimension of mass. The interaction constants A and A are small in this case because
1 is small in comparison with Planck’s mass Mp,. The physical meaning of x is un-
clear, however, and we do not know what a natural value of u would be.

This model is based on the circumstance that there is an interesting result in the
grand unified theories (GUTs). The gauge constants of the strong, weak, and electro-
magnetic interactions are equal at an energy M, much smaller than Planck’s energy.
A natural small parameter thus arises in the GUTs: the ratio of the mass of the
superheavy gauge boson to Planck’s mass, M /M ,,;, which would be on the order of
10™* for the minimal SU(5) theory. In the models of Refs. 5-13 the perturbation
amplitude is essentially independent of M. In the model that we are proposing here, a
nonzero expectation value of the scalar field which causes the inflation also gives us
Planck’s mass; i.e., instead of the Einstein term in the Lagrangian we have
—(—g)""* Rp 2. The perturbation amplitudes are small, of the magnitude required,
because of the small value of My /My, and it is not necessary to introduce any other
small parameters. Consequently, small perturbation amplitudes follow in a natural
way from field-theory considerations in this model, rather than from a fit to astro-
nomical observations.

Let us examine a theory that is gauge-invariant at the tree level. As in the Cole-
man-Weinberg model, gauge invariance is broken only by radiative corrections. The
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theory that we are proposing here is thus a generalization of the Coleman-Weinberg
model to the theory of gravitation.

As a model we consider a version of the grand unified theory constructed on the
SU(5) group with a singlet . The singlet ¢ interacts with the scalar and spinor fields,
and the interaction constants are dimensionless, as follows from the requirement of
gauge invariance. For example, the interaction with the Higgs 24-plet ¢ is

a(tr §?)* + btrg® — Ayo? trd 2. (1)

We also require the discrete symmetry p— — @, §— — $. We assume a, b>a?, where
a = g*/4r~1/50 is the gauge coupling constant, and we assume that the radiative
corrections in the a‘sector can be ignored. Furthermore, we make the usual assump-
tions a, b<a.

The basic idea of this model is that the energy of the vacuum in this model comes
primarily from the fluctuations of vector fields: V'~g*¢*~M % (b /d,)', where ¢ is the
principal component of the 24-plet ¢, where ¢ = ¢ diag(1,1,1, — 3/2, — 3/2), and @, is
the value of ¢ at equilibrium. As a consequence of gauge invariance in the # sector, we
find ¢ < and ¢ /¢, = @/, Where @, is the value of @ at equilibrium. If the field ¢ is
normalized in such a manner that the coefficient of the kinetic term for ¢ becomes
unity, then @, becomes on the order of M,,. We thus have V~(M,/M,)*¢p*, and the
constant of the quaternary interaction, A, turns out to be small in a natural way, as a
consequence of the small value My /M, ~107>. In addition, the dimensionless pertur-
bation amplitude turns out to be small, proportional to®>7 A /2,

The Lagrangian of our theory is

£=[-VR-V() + = D,0P1e) + 2

rem ’

where w is a dimensionless constant, .% ., is the remaining part of the Lagrangian,
which includes other fields, different from ¢, and the interaction of these fields with ¢.
At the tree level we have V(@)= A,p*, but the incorporation of fluctuations of the
vector fields leads to the potential

Loe 1y, B
Veff(tﬁ) - Zﬁ¢4<ln;;o h Z>+ E Soo > (3)

where f = 1152(My /M p,)*, and My is the mass of a superheavy gauge boson. The last
term in (3) is added to satisfy the condition V g(@,) = 0, which means that there is no
cosmological term in the present epoch.

The evolution begins at strong fields, ¢;, >@,. It can be shown that the universe
expands in a quasiexponential fashion until ¢ becomes comparable to ¢,. In order to
solve the familiar cosmological problems cited in Ref. 1, we require ¢;, > 300g,. This
scenario has much in common with Linde’s random scenario.™

It can be shown that the zero-point fluctuations of the scalar field in theory (2)
give rise to perturbations of the metric with a mean square value'

MZ
= 40D+ w/12)" Y WX k¥ %% (k [k). 4)
Pl
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The notation is that of Refs. 6 and 16. Expression (4) holds for In{k,/k }>1. Staro-
binskii'® has derived limitations directly on the quantity k >/24,, at the level of 10*® cm
[In{k,/k }=~=T70]. It follows from observations of the anisotropy of the background radi-

ation that we have k *?h, < 1.5 107>, If the perturbations are to be able to form
galaxies, we must require!®'” k324, > 1.5x107% [The probable value is'®

k3R, = (0.3 — 1)x 1073] In our case, this value is reached at My = (1 — 3)x 10°
GeV (if we assume w < 10)}—an extremely plausible value.

We note that A, a small value, is proportional to (My/M,)*, but the important
point is that the small value of A, in our model is not an obvious contrivance but
instead a consequence of the unification of the strong, weak, and electromagnetic
interactions.

The singlet @ can also be used to solve the problem of the strong CP noninvar-
iance, through the mechanism of an invisible axion.'® In this case @ is a complex field.

I am deeply indebted to A. A. Starobinskif for many useful discussions and valu-
able advice. I also thank I. M. Khalatnikov, A. D. Linde, and Ya. B. Zel’dovich for
interest in this study.
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