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Some new supersymmetry vacuum configurations of a d = 11 supergravity, which
are invariant under the group SO(3,2) X SU(3) X SU(2), are derived. The seven-
dimensional compact space corresponding to these configurations is an SU(2)
instanton on CP2,

1. Considerable interest has recently been attracted to an analysis of all possible
vacuum states of a d = 11 supergravity which result from a spontaneous Freund-
Rubin compactification' of the 11-dimensional space into the direct product of a four-
dimensional anti-de Sitter space and a seven-dimensional compact space of the Ein-
stein type, for which the Ricci tensor is

!l _ 1
R, = — 6m?§; (1)

(I and n are the world indices of the seven-dimensional space, and m is an arbitrary
parameter that has the dimension of reciprocal length). The vacuum configurations of
most interest are those with the topology of a seven-dimensional sphere, .S’ In the case
of a compactification into a standard S’ with the symmetry group SO(8), the corre-
sponding vacuum configuration retains the N = 8 supersymmetry of the effective four-
dimensional sector of the theory, which is reduced to N = 1 upon a deformation of the
standard S into a so-called squashed sphere with the symmetry group SO(5)x SU(2)
(see Ref. 2 and the references there). A study has also been made of the class of
homogeneous seven-dimensional Einstein spaces with the symmetry group®*
SU(3)x SU(2) X U(1), which allow the existence of vacuum configurations with an
N = 2 supersymmetry.*

2. Witten® was the first to call attention to the possibility of establishing a direct
relationship between the structure of compactified vacuum configurations in a d = 11
supergravity and the gauge theory of strong and electroweak interactions. In order to
pursue the realistic direction pointed out by Witten, especially to resolve the question
of a joint spontaneous breaking of the supersymmetry group and of the SU(2)x U(1)
group of the electroweak interactions, it is necessary to study the allowed vacuum
states with the maximum number of unbroken supersymmetries.

In the present letter we are interested in vacuum states which allow N =3 and
N =1 supersymmetries in an effective d = 4 theory and which are invariant under
transformations of the group SO(3,2) X SU(3) X SU(2) [SO(3,2) is the group of motions
of AdS*). To find vacuum configurations of this type we make use of an analogy: S~
may be thought of® as an SU(2) instanton on an S* sphere; i.e., it is an associated
stratified space E (S *,S3,SU(2)) with a base $*, a layer S and a structure group SU(2).
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The metric of this space has the same form as the metric of the space-time in multidi-
mensional Kaluza-Klein theories®:

1 R 1
gp(v) + — 6465 KL Ky —04 (y)K ,, (2)
Smn = k3 ks , (2)

1 A
k—30b (y)KA,-(Z) gik(z)

where g,,(y) and g, (z) are the metrics of S* and $* with the coordinates y* and 2/,
respectively; K ,;(z) are the Killing vectors on S which correspond to one of the invar-
iant subgroups of the SO(4) group and which are normalized by the condition K ,,K
= (1/2)g,.(2) [4 is the SU(2) index]; and %, is the average curvature of the S°, 64(y)
field of a BPTS instanton on S*.

We replace S * by the projective space CP? = SU(3)/SU(2) X U(1), and we consider
the space E (CP2,S?SU(2)), which, as will be shown below, is an SU(2) instanton on
CP>. The space E (CP?,53SU(2)) is locally isomorphic to CP?X.S?, has a symmetry
group SU(3) X SU(2), and is topologically equivalent to the homogeneous space SU(3)/
U(1). We assume that the metric in (2) is the CP? metric and that 64( y) is a gauge field
on CP2, As was shown in Ref. 6, the stress tensor of the gauge fields on the symmetry
spaces G /H is constructed in an orthogonal basis from the structure constants of the
group G, one of whose indices corresponds to the holonomic group H or its invariant
subgroup. In the case under consideration the tensor F?, = 3,84 — 3,04 4+ Cp.*0%
05 [Cpc* are the structure constants of the SU(2) group] is constructed from the
structure constants f,,, of the SU(3) group in a Gell-Mann basis. In an orthogonal
basis, this tensor would be written

A _ A
Fryp)” = kalpay)” (3)

where &, is the average curvature of CP?, and the indices (@) and (b ) correspond to the
space tangent to CP2. It is easy to show that the structure constants f "(a)(,,) satisfy the
condition of self-duality, so that the gauge field specified by stress tensor (3) is an SU(2)
instanton on CP? and is invariant [to within gauge SU(2) transformations] under the
SU(3) group.

3. Let us examine the Riemannian structure of the space E(CP2,S°SU(2)). The

spin connection @, , [(m) and () are indices of the tangent space] matched to metric
(2) is’

K¢ c,A0

B
- K (i)™ (j) "BC “Aa

_ .83 , =
“riik T Crie 0 “lijfija

1
= - A
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i = = gp FwmKai - e T Clme ~ g bealwm W
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and the curvature tensor R (7}, , of connection (4) can be written as follows in the
notation of differential form (2, = R ", »€"'2e!?), with the help of (1) and (3):

- ocpP?
QM{I;) = (“)(b) - 6m2e("})\e(b},

()
Q) = 2m*el¥n en) Q/’)(a} =2m?el )e

(af
Here, by virtue of (1), the curvatures k, and &, are expressed in terms of the parameter

m by k, = 6k, = 24m?; ¢ = &?( y)dy* and " = e(z)dz' + —\/1: 04K Ydy” are refer-
k

3

ence forms on the space E (CP2,S3,SU(2)); and

; 1
(i) = Gl CP*(a) |- (a) A (a) s
Ka = geirkas &7 Wy ka (£ (g afiepta)” + I ystiera)” ye

4. The space E (CP2,5%,SU(2)) with the Riemannian structure specified by (1)-(5) is
therefore a Freund-Rubin solution. As has been shown elsewhere,>* the maximum
number of unbroken supersymmetries of the four-dimensional sector of the theory in
Freund-Rubin solutions is characterized by the number of independent eight-compo-
nent spinors 7, which are invariant under transformations C,,.,

(pits) _ ,v/p)

=0, (6)

Crmjm) ™ = Rpmyin) oo ST )T g5y

which generate a subgroup of the Spin (7) group (I, are 8 X8 Dirac matrices). In the
case under consideration, the C,,,, become

= = CP*  (¢)(d) 7

S ™ Sy =% Sy = Riayn L) Cra) = 8m*T 1) L) 7
and, as is easily shown, form a Lie algebra of the SU(2) group which leaves four spinors
invariant. It can be shown, however, that the equation (D, — (1/2)mI",)n =0, for
which (6) is an integrability condition,” has only three solutions, so that the vacuum

configuration under consideration here preserves the N =3 supersymmetry in the
effective d = 4 theory.

5. It can be shown that if k, = % ky= 4;0 m?, then metric (2) is also Einsteinian,
and in the case of E(S*S3SU(2)) it corresponds to a squashed® S”; in the case
E (CP?,S°SU(2))it corresponds to an SU(3)/U(1) space with a deformed canonical met-
ric. Such vacuum configurations preserve the N = 1 supersymmetry in d = 4.

6. By virtue of the theorem of Ref. 4, the complete symmetry groups of the
vacuum states found here are the supergroups O Sp(4,3)xXSU(3) and O Sp(4,1)
X SU(3) X SU(2), respectively.

We note in conclusion that all the known Freund-Rubin solutions and also sever-
al new solutions (some of which preserve the N =2 supersymmetry) form a class of
spaces in which compactification occurs in two steps. In the first step, as in the classi-
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cal Kaluza-Klein theory, an S ' sphere and an Abelian gauge field form. In the second
step, this Abelian field causes a compactification of the six-dimensional space and
leads to the formation of various vacuum states of a d = 11 supergravity.
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