Production of an exotic resonance in $\gamma\gamma\rightarrow\rho\rho$

N. N. Achasov, S. A. Devyanin, and G. N. Shestakov Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR

(Submitted 16 September 1984)

Pis'ma Zh. Eksp. Teor. Fiz. 40, No. 8, 365-367 (25 October 1984)

A case is made for the hypothesis that an exotic meson with I=2, $J^P=2^+$, and $m_E\approx 1.4$ GeV has been discovered in $\gamma\gamma\to\rho^0\rho^0$ and $\gamma\gamma\to\rho^+\rho^-$ reactions.

A significant increase in the cross section for the reaction $\gamma\gamma\to\rho^0\rho^0$ near its threshold has recently been observed and studied in some detail (see Refs. 1 and 2 and the review by Kolanoski³). The JADE group has recently observed³ that there is no corresponding increase in the reaction $\gamma\gamma\to\rho^+\rho^-$. This phenomenon was predicted in our earlier papers.⁴ Using the vector-dominance model and the predictions of the MIT bag model for the wave functions of four-quark states,⁵ we showed⁴ that the increase in the cross section for the reaction $\gamma\gamma\to\rho^0\rho^0$ can be attributed to the production of tensor $q^2\bar{q}^2$ states, but there should be no corresponding increase in the reaction $\gamma\gamma\to\rho^0\rho^0$. The reason for these conclusions is that the reaction $\gamma\gamma\to\rho\rho$ gives rise to several $q^2\bar{q}^2$ tensor states, one of which, which is clearly exotic with an isospin I=2, interferes in different ways with the isoscalar resonances in the $\gamma\gamma\to\rho^0\rho^0$ and $\gamma\gamma\to\rho^+\rho^-$ channels.

In this letter we wish to discuss some phenomena observed in $\gamma\gamma\to\rho\rho$ reactions, avoiding to the extent possible any overly specific model-based assumptions, e.g., those associated with the MIT bag model. Instead we will use only the most general theoretical considerations and models. As a result, we conclude that an exotic resonance with an isospin I=2, $J^P=2^+$, and $m\approx 1.4$ GeV has been detected in the reaction $\gamma\gamma\to\rho^0\rho^0$.

Figure 1 shows data on the $\gamma\gamma\rightarrow\rho\rho$ reactions. The TASSO and CELLO data on the reaction $\gamma\gamma\rightarrow\rho^0\rho^0$ are slightly different, but both sets of data "unanimously" demonstrate qualitatively an increase with a peak at ~ 1.5 GeV near the reaction threshold.

A question of fundamental importance for a resonance interpretation of the increase in the $\gamma\gamma\rightarrow\rho^0\rho^0$ cross section is whether it has definite quantum numbers.

We will show that the CELLO results² justify the assumption that the increase in the $\gamma\gamma\to\rho^0\rho^0$ cross section has the quantum numbers of a tensor meson, $J^P=2^+$. In the first place, the CELLO group found² that for $\gamma\gamma\to\rho^0\rho^0\to 4\pi$ events selected in the intervals 1.3 GeV $< W_{\gamma\gamma} < 2.3$ and 0.66 GeV $< m_{\pi^+\pi^-} < 0.86$ GeV there is no dependence on the emission angle of the ρ^0 meson in the $\gamma\gamma$ c.m. frame (cos θ ρ ; see Fig. 2a). This means that an S wave is playing a leading role in the $\rho^0\rho^0$ system; i.e., we have $J^P=0^+$ or $J^P=2^+$ for the state of the $\rho^0\rho^0$ system. That P-wave states with $J^P=0^-$ and 2^- are unimportant in the reaction $\gamma\gamma\to\rho^0\rho^0$ is confirmed by the results of the TASSO group.¹ Second, the CELLO group found that the element ρ^H_{00} (cos θ_ρ) of the spin density matrix of the ρ^0 meson in the "helicity" system vanishes at $|\cos\theta_\rho|=1$

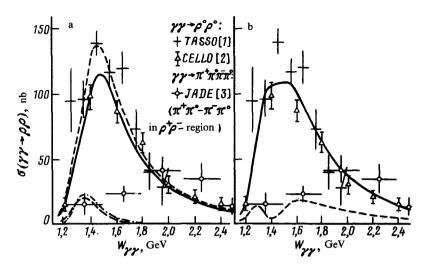


FIG. 1. a: $\sigma(\gamma\gamma\rightarrow\rho^0\rho^0)$. Solid curve—Best description of the CELLO data $(m_E=1.4~{\rm GeV},\ \Gamma_L^1=2~{\rm GeV},\ \Gamma_E^0=0.3~{\rm GeV})\ [\Gamma_{E\gamma\gamma}\approx 6~{\rm keV};\ {\rm see}\ (3)];$ dashed curve—best description of the TASSO data $(m_E=1.4~{\rm GeV},\ \Gamma_E^1=0.3~{\rm GeV})\ [\Gamma_{E\gamma\gamma}\approx 6.9~{\rm keV};\ {\rm see}\ (3)].$ $\sigma(\gamma\gamma\rightarrow\rho^+\rho^-)$: Dashed and dot-dashed curves—the same as the solid and dashed curves; respectively, for $\gamma\gamma\rightarrow\rho^0\rho^0$. b: Solid curve— $\sigma(\gamma\gamma\rightarrow\rho^0\rho^0)$; dashed curve— $\sigma(\gamma\gamma\rightarrow\rho^0\rho^0)$ ($m_E=1.33~{\rm GeV},\ \Gamma_E^1=1.4~{\rm GeV},\ \Gamma_E^0=0.23~{\rm GeV},\ m_C=1.6~{\rm GeV},\ \Gamma_C^1=1~{\rm GeV},\ \Gamma_C^0=0.6~{\rm GeV})\ [\Gamma_{E\gamma\gamma}\approx 4.2~{\rm keV},\ \Gamma_{C\gamma\gamma}\approx 3~{\rm keV};\ {\rm see}\ (3)].$

(Fig. 2b); i.e., the increase in the $\gamma\gamma\to\rho^0\rho^0$ cross section is caused primarily by γ rays with helicities $|\lambda_{\gamma}-\lambda_{\gamma}'|=2$. This means that the increase in the $\gamma\gamma\to\rho^0\rho^0$ cross section has the quantum numbers $J^P=2^+$. For the $J^P=0^+$ state in the $\rho^0\rho^0$ system the elements of the spin density matrix of the ρ^0 meson are completely independent of $\cos\theta_0$.

We thus have every basis to assume that the increase in the $\gamma\gamma \rightarrow \rho^0\rho^0$ cross section is of a resonance origin. If so, what does the absence of an analogous increase in the

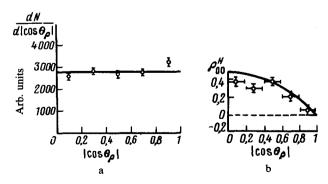


FIG. 2. a—Distribution in $|\cos\theta\rho|^2$ of events in the reaction $\gamma\gamma\to\rho^0\rho^0\to\pi^+\pi^-\pi^+\pi^-$; b— $\rho_{00}^H(\cos\theta_\rho)$ an element of the spin density matrix of the ρ^0 meson in the helicity system²; the curve is $(1/2)\sin^2(\text{Refs. 4} \text{ and 6})$.

 $\gamma\gamma\rightarrow\rho^+\rho^-$ cross section mean? The physically most plausible and at the same time the most elegant explanation is that the $\gamma\gamma\rightarrow\rho^0\rho^0$ reaction involves the production of at least one resonance with an isospin I=0 and one with I=2. These resonances have approximately equal masses and cancel out in the reaction $\gamma\gamma\rightarrow\rho^+\rho^-$.

It follows from general considerations based on isotopic invariance that

$$A(\gamma\gamma \to \rho^0 \rho^0) = \frac{1}{3}A(0) + \frac{2}{3}A(2),$$
 (1)

$$A(\gamma\gamma \rightarrow \rho^{+}\rho^{-}) = \frac{\sqrt{2}}{3}A(0) - \frac{\sqrt{2}}{3}A(2),$$

where A (0) and A (2) are the production amplitudes of the states with isospins 0 and 2, respectively. The identity of the ρ^0 mesons is incorporated in the normalization of the amplitude A ($\gamma\gamma\rightarrow\rho^0\rho^0$). It can be seen from (1) that while the I=0 and 2 contributions add up in the reaction $\gamma\gamma\rightarrow\rho^0\rho^0$, it is their difference that figures in the reaction $\gamma\gamma\rightarrow\rho^+\rho^-$, since the contribution with I=2 changes sign.

Furthermore, the vector-dominance model $\gamma\gamma \rightarrow \rho^0\rho^0 \rightarrow R + R' \dots \rightarrow \rho^0\rho^0$ and $\gamma\gamma \rightarrow \rho^0\rho^0 \rightarrow R + R' + \dots \rightarrow \rho^+\rho^-$ logically leads to the conclusion that the resonances with approximately equal masses $(R, R' + \dots)$ add up in the reaction $\gamma\gamma \rightarrow \rho^0\rho^0$ because of a factorization of the coupling constants irrespective of their isotopic spin.

We restrict the discussion here to two tensor resonances. We call the resonance with I=0 "C" and that with I=2 "E". We also consider the well-known resonance $f(1273, 2^+)$, I=0. To calculate their contributions to the cross sections $\gamma\gamma\to\rho^0\rho^0$ and $\rho^+\rho^-$, we use the standard relativistic Breit-Wigner formulas. In the widths of the resonances, we single out the contributions from the decays $R\to\rho\rho$, which vary rapidly over the interval $s=W^2_{\gamma\gamma}$ of interest here:

$$\Gamma_R(s) = \Gamma_R^0 + \Gamma_{R\rho\rho}(s), \qquad \Gamma_{f\rho\rho}(s) = 3\Gamma_{f\rho^0\rho^0}(s),$$

$$\Gamma_{C\rho\rho}(s) = 3\Gamma_{C\rho^0\rho^0}(s), \quad \Gamma_{E\rho\rho}(s) = 1,5\Gamma_{E\rho^0\rho^0}(s), \quad \Gamma_{R\rho^0\rho^0}(s) = \Gamma_R^1 F_{\rho^0\rho^0}(s). \quad (2)$$

Here $F_{\rho^0\rho^0} < 1$ is the phase volume of the system of unstable $\rho^0\rho^0$ mesons. In the spirit of the vector-dominance model, we assume that

$$\Gamma_{R\gamma\gamma} = \left(\frac{4\pi\alpha}{f_{\rho}^2}\right)^2 r_R \Gamma_R^1 \ , \tag{3}$$

and we assume that the f, C, and E mesons are produced in the same spin amplitudes, since the f meson is also produced in $\gamma\gamma$ collisions, as we know, from $\gamma\gamma \to \pi\pi$ reactions, f for g rays with $|\lambda_{\gamma} - \lambda_{\gamma}'| = 2$. For simplicity, we assume that the parameter r_R in (3) is common to all three resonances ($r_R = r$), and we determine it from data on the f meson.

Assuming that the entire decay $f \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ occurs through the channel

 $f \rightarrow \rho^0 \rho^0$; using $BR(f \rightarrow \pi^+ \pi^- \pi^+ \pi^-) = 2.9\%$, $BR(f \rightarrow \gamma \gamma) = 0.0015\%$, and $F_{\rho^0 \rho^0}(m_f^2)_{\gamma, \lambda}$ = 0.53×10⁻²; and setting $(4\pi\alpha/f_{\rho}^{2}) = 10^{-5}$, we find $r \approx 0.3$.

The most surprising result of the fit of the data is that all the phenomena observed near the threshold for the reactions $\gamma\gamma \rightarrow \rho^0\rho^0$ and $\gamma\gamma \rightarrow \rho^+\rho^-$ can be explained in terms of simply two resonances: the well-known f meson and the exotic new E meson (Fig. 1a). In this case, the permissible values of m_E are restricted quite strongly to the interval 1.4-1.45 GeV.

The incorporation of the C resonance slightly expands the interval of allowed masses of the E meson (1.3 $< m_E < 1.5$ GeV), while the restrictions on m_C are very indistinct (1.4 $< m_C <$ 1.8 GeV). The data are consistent with a significant contribution of the C resonance. Using it, we can even improve the agreement of the theoretical description of the reaction $\gamma\gamma \rightarrow \pi^+\pi^0\pi^-\pi^0$ with experimental data at $W_{\gamma\gamma} > 1.5$ GeV (Fig. 1b). However, the problem of fitting the theoretical curves to the data on the $\gamma\gamma \to \pi^+\pi^0\pi^-\pi^0$ reaction in this region cannot be assigned much weight, since no $\gamma\gamma \to \rho^+\rho^- \to \pi^+\pi^0\pi^-\pi^0$ events have been identified in the $\gamma\gamma \to \pi^+\pi^0\pi^-\pi^0$ reaction.³

Analysis of the data suggests that a strong coupling of the E meson is strongly coupled to with the $\rho\rho$ system: $\Gamma_E^1 \sim 1$ GeV (see also the Fig. 1 caption).

We are convinced that the data in the region $1.2 < W_{\gamma\gamma} < 1.8$ GeV cannot be described by a resonance with I=0 and a background with I=2.

We do not know of any well-grounded nonresonance explanations for the increase in the cross section for the reaction $\gamma\gamma\rightarrow\rho^0\rho^0$ that has been observed near the threshold. Furthermore, we see no other way to interpret this increase without a resonance. We are thus forced to conclude that an exotic meson with I=2, $J^P=2^+$, and m_F \approx 1.4 GeV, containing at least four quarks, $q^2\bar{q}^2$, has been discovered in the reaction $\gamma\gamma \rightarrow \rho^0 \rho^0$.

This question is discussed in more detail in a preprint.⁸

Translated by Dave Parsons Edited by S. J. Amoretty

¹TASSO, Z. Phys. C16, 13 (1982).

²CELLO, Z. Phys. C21, 205 (1984).

³H. Kolanoski, Proceedings of the Fifth International Workshop on Photon-Photon Interactions, Aachen,

⁴N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Phys. Lett. 108B, 134 (1982); Z. Phys. C16, 55

⁵R. L. Jaffe, Phys. Rev. D 15, 267, 281 (1977).

⁶J. E. Olsson, Proceedings of the Fifth International Workshop in Photon-Photon Interactions, Aachen,

⁷Particle Data Group, Rev. Mod. Phys. 56, No. 2, Part 2, S19 (1984).

⁸N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Preprint TPh-No. 65 (141), Institute for Mathematics, Novosibirsk, 1984.