Structure of nonrotational states of deformed nuclei
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According to experimental data, the wave functions of several
K™=0;",0,",2;",2;", 4,7, and 4," states in deformed nuclei have large single-
phonon or two-quasiparticle compounents, in qualitative agreement with the
quasiparticle-phonon model of the nucleus and in contradiction of the model of
interacting bosons.

The low-lying nonrotational states of even-even deformed nuclei are interpreted
as two-quasiparticle or collective vibrational states.'~* In a microscopic description in
the random-phase approximation, one calculates the states Aui with fixed multipolari-
ties Ay, u=K; the number of roots i of the secular equation is equal to the number of
two-quasiparticle neutron and proton states. The first excited states (i = 1), K" = 2"
and 0,, are collective ¥ and [ vibrational states; then comes weakly collectivized
states (i =2, 3, 4, ... ); and finally collective states that form giant resonances. The
wave function is a superposition of two-quasiparticle components of a particle-hole
type. For the first collective states, the normalization of the wave function is affected
significantly by a large number of two-quasiparticle components, but only a small part
of the space of two-quasiparticle states is taken into account.

The nonrotational states of deformed nuclei are described more accurately in the
quasiparticle-phonon model of the nucleus.>® In this model the wave function is writ-
ten as the sum of one- and two-phonon components, and the Pauli principle is satisfied
exactly in the two-phonon components. According to Ref. 6, the first excited state
with a fixed value of K" is a collective state (the contribution of the one-phonon
component with /=1 exceeds 80-90%). The total contribution of the one-phonon
components with i = 2, 3, ... to the wave functions of the second, third, and other
states exceeds 80%. It is furthermore concluded in Ref. 6 that there are no collective
two-phonon states in deformed nuclei; this conclusion does not contradict any experi-
mental result. According to some new experimental data,’” the state I” =4+, 2.03
MeV, in '®Er, which had previously been assigned K = 4 and which had been inter-
preted in Refs. 8 and 9 as a two-phonon state, has the value K = 0 and is not a two-
phonon state.

Many calculations in recent years have been based on the model of interacting
bosons.'® In this model the description of the K” = 0% and 2™ states in deformed
nuclei uses™'"'? an approximate classification of these states in terms of the numbers
ng and n, of S-and y-vibration phonons. The first K™ = 2," y-vibration states have
n, = 1; the second states, 2,7, have n, = 1, ng = 1; etc. The first excited B-vibration
states, K 7= O ,", are characterized by ngz = 1; then we have 0;" with n, =2, 0"
with ny =2, etc. In the interacting-boson model, the 2;" and 0," states have roughly
the same two-quasiparticle components as the one-phonon y-and S-vibration states in
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the random-phase approximation. In a description of the - and 3-vibration states in
the microscopic approach, there is no substantial difference between the interacting-
boson model and the quasiparticle-phonon model. The limitation on the phenomeno-
logical interacting-boson model is its inability to use experimental data from (dp) and
(dt) reactions on the quasiparticle structure of phonons.

It can be asserted that there is a fundamental distinction between the description
of the structure of several states of even-even deformed nuclei in the quasiparticle-
phonon models and the interacting-boson model. In the latter, the wave functions of
the K7=2,",2",..., 0,5,0,7,..., 4,7, ... states consist of components of the
types n, =2, ng =2, n, =1, ng = 1, etc., and do not contain two-quasiparticle or
one-phonon components. In the quasiparticle-phonon model, the wave functions of
these states contain large one-phonon i =2, 3, ... components and there are no large
two-phonon components. From the standpoint of the microscopic approach, the inter-
acting-boson model incorporates only that small fraction of the two-quasiparticle
states which goes into the - and B-vibration photons. According to the quasiparticle-
phonon model, the structure of these states is determined by another set of two-
quasiparticle states, which are not present in the interacting-boson model. Just which
of these two descriptions is more accurate will be decided by experimental data on the
structure of these states, found for the most part from one- and two-nucleon transfer
reactions. Experimental data”'?~'¢ on '**Er and '°%1°°Gd are listed in Table I, along
with results calculated for '®Er and '°®Gd in the quasiparticle-phonon model.*!’ In
addition to the energies, we show the data illustrating the contribution of one-phonon
components and their structure. For '**Er and '*%!5Gd, the energies and structure of
the y- and f(-vibration states are described quite well by the quasiparticle-phonon
model and are not listed in Table L

The nucleus for which we have the most comprehensive experimental data' is
188Er. The rotational bands constructed from the states K ™ =0,", 0,", and 2," are
highly excited in the (#p) reaction; in the (tar) reaction, we see evidence of a two-
quasiparticle configuration pp411| — 411| in the state 0,%, 1.834 MeV. This result
indicates that the wave functions of these states have large one-phonon components.
The state K™ =4, 2.056 MeV, decays into a band with K7 =47, 1.094 MeV and,
according to Ref. 7, it has no large two-phonon (221, 221) components. According to
calculations in the quasiparticle-phonon model,*!” the wave functions of all the '**Er
states listed in Table I have large one-phonon components. According to the calcula-
tions of Refs. 11 and 12 in the interacting-boson model, all the states listed in Table I
are formed from two or three bosons and have no one-phonon components. Three
bands constructed from K™ = 0™ excited states have been detected experimentally'**¢
in each of the nuclei **'**Gd. In each nucleus, the 270, and 270, states have large
values of B (E2) for transitions to the ground state. According to the calculations of
Refs. 15 and 16 in the interacting-boson model, either the 2% 0, state or the 2%0,
state—but not both simultaneously—has a large value of B{E2). According to the
experimental data, the 0,;% and O;" states have large one-phonon components, while
the two-quasiparticle configuration pp411t — 4111 in the 0," state is seen clearly in
58Gd in the (ta) reaction. The states K ™ = 4;* and 4," in each nucleus have large two-
quasiparticle components, pp4111 + 413! and nn5211 + 5234, respectively.
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The experimental data on the K7 = 0,7, 0,7, 2,+, 25t , 4,7, and 4," states listed in
Table I demonstrate the presence in the wave functions of large one-phonon or two-
quasiparticle components, which are described qualitatively correctly by the quasipar-
ticle-phonon model but which are not present in the interacting-boson model. States of
this type are observed in other nuclei, e.g., isotopes of Yb and Hf. This is also true of
the K™ = 3" and other states. The agreement between the calculations carried out in
the interacting-boson model and the experimental data on the energies and the values
of B (E 2) is not satisfactory; it is necessary to find a correct description of the structure
of the states. States with large one-phonon components (other than 0,", 2*, and 4,
with a g boson) should be eliminated from calculations in the interacting-boson model.
The basic shortcoming of this model is that it takes into account only a small part of
the space of two-quasiparticle states, and this shortcoming cannot be overcome by an
optimum choice of parameters. In spherical nuclei, states of the same type as those
discussed here lie above two-phonon states, and no contradictions of the type dis-
cussed above have yet been found.

A further study of the structure of even-even deformed nuclei will require mea-
surements of the contribution of two-quasiparticle components to the wave functions
of rotational bands constructed from K™ =0,,..., 2,5,..., 3/,..., 4",... and
other states at energies in the interval 1.5-2.5 MeV. It will also be necessary to search
for two-phonon collective states.
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