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It is demonstrated within the framework of perturbation theory that a two-
dimensional walk in a weakly nonuniform medium reduces to pure diffusion. The
nondiffusion behavior in a walk in a strongly inhomogeneous medium observed in
a numerical experiment by E. Marinari et al. [Phys. Rev. Lett. 50, 1223 (1983)]
which is attributable to the existence of small, deep traps, is not related to the
dimensionality of the space.

PACS numbers: 05.40. + j

We shall examine the problem of the random walk of a particle on a lattice with
dimension 4. At each lattice point i, the probabilities P, ,; of hops to the neighboring
points j are random quantities 3; P, ,; = 1 which are fixed for each point. It is known
that in one dimension, such a walk turns out to be strongly non-Gaussian; the average
displacement depends on the number of hops (or time) as R (V) < In*N." In two dimen-
sions, the situation is not clear. In their paper Marinari et al.? present results of a
computer simulation of such a random walk and they show that depending on the
degree of inhomogeneity, the random walk for large N reduces either to free (diffusion)
or nondiffusion R (V) N%, a < 1/2 or R (N)«<InN behavior.

To describe a random walk in a weakly inhomogeneous medium, we shall use a
Gaussian diagram technique, developed by Obukhov and Peliti® (see also Ref. 4). The
vector b, = 3, P, ,;e; (e; is a vector from point / to the nearest neighboring points) is
introduced at each lattice point i. A random walk in a weakly inhomogeneous medium
can be viewed as pure diffusion with a superposition of displacements with magnitude
b; on it at each point traversed. In the continuous limit, we obtain the following
expression for the correlation function of such a walk:
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G(0,0; 1) =[D¢D¢*¢ (0, 0) ¢(r,1)exp {—(Ho +H,)}, (1a)

Hy =1 dtfar¢* (& 0)[~ —a?- +UO V16 (e, 1), (1b)
: t
Hi=Tajdrg (5e) (1— "0 Dgr ), (1¢)

We assume that b(r) is a random function with correlation function
<b (Mb()>=21dy & x—1). (2)

Expanding (1a) in powers of H| can calculating the average using Wick’s theorem, it is
easy to verify that we obtain a perturbation series for the problem of a random walk
with successive inclusion of one inhomogeneity, two inhomogeneties, and so on. After
averaging over all possible fields b(r), we obtain, after limiting the analysis to the
quadratic term in the gradients, the following expression:

Hy =—oOf drar’ fdrde 66, 0T 4% (e, 1 ) o (r', 1) T 44 (7, 1), (1d)

The renormalization-group equations for a walk with an interaction of the type (1d),
which contains the second power of the gradient, were obtained in general form by
Obukhov and Peliti.> For the particular case (1d) (in the papers cited, this means that
g =g¥ = — 99 see also Ref. 4), we obtain

dy/dE =—~%]2, (3)

where £ = In a’/a is the logarithm of the ratio of the scales. The equation has a zero-
charge solution ¥ = y"%/(1 + Y€ /2). We note that the first-order correction with re-
spect to ¥ to the quantity D, i.e., to the diffusion coefficient, is identically equal to
zero, and the second-order correction has the form — [Fcy?D ~*dé = — 2cyOD O3,
where ¢~ 1, i.e., the interaction (1d) leads only to a renormalization of the diffusion
coefficient at large scales. Higher-order terms in the gradients, which we ignored in
deriving (1d), also renormalize the diffusion coefficient to some extent. This renormal-
ization occurs at small scales and it may be assumed to be included in D ©. Analogous-
ly, if the distribution of the random field b (7) is not purely Gaussian, then this leads to
terms of the form (#V¢ *)*, n > 2 in (1d) and it is easy to see they are also unimportant
at large distances.

A walk in an inhomogeneous medium also reduces to a purely random walk in a
space with dimension less than two: in Egs. (3)(5), it is only necessary to replace
&=Ina'/a by

1 a' _
= —— [( —)f—1], e=2—a. 4)
€ a

Nevertheless, it is well known' that for d = 1, a walk in an inhomogeneous medium is
localized. The case d = 1, is singled out, since any distribution of random forces on a
straight line can be described with the help of a potential ¥ such that b = VV. The
condition that the random force be a potential force is very strong, since for each point
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of the space it is necessary to introduce in this case the probability of attaining it, e”’;
in this case, the starting approximation (1b) cannot be used.

We shall now show how “localization” arose in the numerical experiment in Ref.
2. In the experiment, probability distributions for the transitions were generated at
each lattice point: P, ; = a;/2,af, where a; are random numbers from the interval
(0,1). For small K, the probability distribution P, ; is slightly inhomogeneous and for
large K, one of the probabilities P, ,; is close to unity and the remaining probabilities
are small. We shall now examine the simplest trap, consisting of two lattice points
situated next to each other. From site 1, the particle with overwhelming probability
goes over to site 2 and vice versa. This means that of the numbers a,;, the number a,,
is larger than all the others. We introduce the quantity g,, equal to the ratio a*/a,,
where af is maximum number of all the remaining Z — 1 numbers @,; (Z is the num-
ber of nearest neighbors). The probability of leaving the trap, i.e., of going to some
lattice point other than point 2, is g¥. The number of steps N, required to leave such a
trap is larger than No~¢q ¥. The probability that q,, g, < g, where g is some number,
is calculated in an elementary way and is equal to Z ~'¢*%4 — 2. Thus traps with ¥ exits
are distributed as F (N ) ~ NI =22 —2/KI~1 Thjs function is evidently normalizable, i.e.,
S7 F(N)N exits and is determined by small N. But, the average time for leaving a
trap is determined by the expression

N—=§NF(N)ﬂV/fF(N) N (5)

and diverges for K>K, = 2Z — 2. For a two-dimensional square lattice, K, = 6. The
number n of traps overcome is not proportional to the total number of steps N and
depends on N as N¥% for K = 6, n < N /In N). Inclusion of more complicated traps
consisting of three points, four points, and so on is important only for K>8, but,
apparently, does not change the asymptotic behavior indicated above. The average
distance taversed over N stepsis R (V) < N** (K > 6) and approaches R (N ) « In N in the
limit of large K. The spectral density of low-frequency noise generated by such a walk
S{f)efi~¢%)—1 approaches 1/fin the limit K— oo. In this limiting case, our model is
analogous to McWhorter’s’ model, proposed as an explanation of noise in semicon-
ductors. We note that the effect of a nondiffusion walk in a strongly inhomogeneous
medium does not depend on the dimensionality of the space, but is related only to the
local properties of the medium (in our case, it is determined by the coordination
number of the lattice). Calculations with small K, performed in Ref. 2, confirm our
conclusion that a walk in a weakly inhomogeneous medium is a purely random pro-
cess.

I am grateful to D. E. Khmel'nitskii, K. M. Khanin, and E. I. Rashba for stimu-
lating discussions and critical remarks.
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