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It is shown, for the first time, that the nonlocal nature of the density functional
must be taken into consideration for polymers with a fairly general chemical
structure.

Phase transitions in low-molecular systems are customarily described by the Lan-
dau method, which starts from an expansion of a free-energy functional F{p, } of the
system in powers of @, (X) = p, (X) — p,,, which are the deviations of the densities
P (%) of the various components « from their values in the disordered phase.'-? Sever-
al authors have formally extended this method to the description of polymer sys-
tems.>* However, this formal use of the standard Landau theory turns out to be
incorrect for real polymer systems, as we will demonstrate below. A rigorous analysis
shows that the functional F{p,, } is very nonlocal, despite the short-range nature of the
van der Waals interactions between the monomer units of the polymer molecules.

The reason for the appearance of an effective long-range effect is that the mon-
omer units M, are coupled with each other by chemical bonds in the macromolecule
and thus cannot be treated as independent thermodynamic components within the
framework of standard statistical physics. Nevertheless, one might suggest a thermo-
dynamic description based on a density-functional method in which these units play
the role of quasicomponents. When a description of this sort is used for the statistical
ensemble of units M, and the constraints imposed by the bonds are taken into ac-
count, we no longer have the concept of a chemical potential for these quasicompon-
ents, and the corresponding functional F{p,} turns out to be very nonlocal.

To illustrate the physical meaning of this effect, we consider the simple example
of a system with molecules of species i in concentrations ¢, (X). These molecules con-
sist of /, units. For given total numbers of these molecules, #,, the entropy of this
system is well known:

S = —Z/di‘c;(f)ln c.-(:c"')’ ni = /d:fc.-(:i'). (1)

€

In a less detailed description of the system, it can be characterized by a resultant
density p(2) = ¢ (%), + (%)), + ... . The functional S{p(¥)} is found from the
condition for a maximum of S'in (1) with respect to ¢j (X) for given p(X) and n;. As a
result, we find the following expression for the case of low—-molecular systems (/; =1
for all 7):
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SU(@)} = Smiz + Siclol@), Sielol@) = - [ ap@m 2D, @
where the mixing entropy is related to the numbers #; in the standard way.’ In the
case of polymers, S, ;. becomes a nonlocal functional of the density p(%*). The first
nonvanishing term of a Landau expansion in ¢(X) of the functional is

Smt’z{p} = Smt'z{p} = —% f didf’K(f— il)‘oz(f)pz(il)’ K(E) = '7/V (3)

The coefficient y is proportional to the quantity mm, — m32, where my =n /¥
4 nyl ¥ + ..., which is expressed in terms of the moments my of the distribution of
the polymer molecules with respect to the number of units they contain, /;. The quan-
tity ¥ is the volume of the system. The local term S, in (2) has the standard form of
a power series in @(X) in the Landau theory.

One of the most significant manifestations of a nonlocal nature is that the phase
coexistence line on the (P, 7)) diagrams broadens out into a region of finite dimensions.
As a result, at certain values of the pressure P there is a finite temperature interval on
this diagram in which both phases are at thermodynamic equilibrium.

The simple arguments presented above, for the case in which the molecules are
treated as point molecules, are incapable of describing superstructures with scales
comparable to the size of the polymer molecules. To describe such effects, we have
developed a general approach for calculating the functional

F(n(c), {pa(@)}) = (u(C), {a(®)}) + 2 n(CIu(C), @
C

for a given distribution of the numbers #(C) of molecules of chemical structure C,
where the potential 1£(C) of molecule C is found from the condition

n(C) = -30(u(C), {ra(2)})/3u(C). )
To calculate the thermodynamic potential € as a functional of (generally nonequilibri-

um) density distributions p,, (¥), it is convenient to use the Leontovich-Lifshitz for-
malism®’

0u(C), £a(@)) = 0((C), hal@) = [ dba(@pa @)+ [ daf (pald),

(6)
which relates ) to (},, the thermodynamic potential of the equilibrium system of
molecules whose units do not interact with each other and which are in an external
field 4, (X) that shapes the same density distribution:

pal(2) = 60 (4(C), {ha(2)})/6ha(). @
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The interaction of the units with each other is taken into account by the function
f*(p,) here. This function is well known in the theory of low-molecular liquids.’

The chemical potential for molecules C found from the solution of Eqs. (5) for a
system with a nonequilibrium distribution {pa (%)} is, for given n(C), a functional of
this distribution. In the case of low-molecular systems, however, there is no such
functional dependence. This point can be verified easily with the help of (5)-(7), since
in this case the functional ), depends on its arguments only in the combinations
Ay (X) — fie. In an analysis of high-molecular systems, in which the number of ther-
modynamic components C is usually greater than the number of quasicomponents
M,, the dependence of u(C) on {p, (¥)} must be dealt with when the functional
F(n(C){p,(¥)}) in (4) is found.

To find an explicit expression for the functional u(C,{p, (¥)}), we expand the
potential £ in (6) in a functional series in powers of ¥, (X) = p, (%) — p,, where o},
is the density of the spatially homogeneous state of the system with a given set of
chemical potentials ¢ (C) of all molecules C. An expansion of this sort is well known
in the fluctuation theory of phase transitions,' in which p}, means the extent of the
spontaneous ordering. The expansion coefficients 7°(} , (#(C), X,..X,)—the irredu-
cible vertex parts—are related to the irreducible correlation coefficients
G, (u(C), X,..%,) of the fluctuations of the density p, (¥) by simple equations.'

Substituting into (1) the dependence u(C,{p, (¥)}) found from (5), we reex-
pand the functional F in powers of the functions

Pa(Z) = YalD) + ¥4, ¥4 = P4 — Pa- (8)

The coefficients T;’I’)a (n(C), %,.%,) of this expansion are the same as
L (u(C), %,..%,) for low-molecular systems, since in this case we have ¢, =0,
and the u(C) do not depend on {p, (%) }. A specific feature of polymer systems is that
™ differs from T for n>4, because of the appearance of nonlocal contributions to

the vertices ', which have been ignored in previous studies.**

The most compact representation of the vertices T is found by a diagram
technique which is a modification of one which has been used previously in the de-
scription of nonuniform fluctuations in low—molecular systems.' To the notation intro-
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FIG. 1. Elements of the diagram technique: the n-point correlation functions G s ) for (a) n=2,

e, (G

(b) n=3, and (¢) n=4 Also shown here are the function Gf,z,,‘,n(0,0) and the “brick”
G e, (§18216:G4).
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f"g -3 +3 - +]‘m FIG. 2. Diagram representation of the
{nt vertex .

duced in Ref. 1 for the correlation functions G (Fig. 1, a—c), we will add some
additional diagrams for our modification of the technique. At n =4, for example,
these additional diagrams are the wavy line and the “brick” in Fig. 1, d and e. Corre-
sponding to these diagram elements in an analysis of polymer systems in the momen-
tum representation are the following expressions:

G o (@1ndn) = Y n(C)gl?) o (Cd1neT)s
C
(9

%(4) e e oy L - .y
G anlasas (@182l0s30) = D n(C)g2,. (C, qid2)92,, (C, Bd4),
C

where g1 , (C, §,...4, ) is the Fourier component of the n-point correlation function
of the density of the units of molecule C (these units do not interact with each other).
The correlation functions G in (9) are equal to G*” (u(C),...) for the particular
choice u(C) = u(C, {p, 1.

Figure 2 shows a graphic representation of the vertex I'® in this notation. The
term T'{Y, which reflects the interaction of the units, is equal to the corresponding
fourth derivative of the function f*(p, ) in (6). As in Ref. 1, the symbols 2 mean a
summation over all partitionings of the arguments into groups. The expression in
braces (curly brackets) in Fig. 2 has the standard form' for T®, while the other terms
(which are generally not small in comparison with 7) are associated with the nonlo-
cal nature of the functional F. The first and second terms in square brackets arise
because of the reexpansion of %, and T [see (8)], respectively. They cancel each
other out exactly in the case of low—molecular systems.

Nonlocal effects are particularly important in the derivation of a theory of period-
ic superstructures in heteropolymer systems. For melts of polyblock heteropolymers,
for example, these effects lead® to the formation of superstructures with a period which
depends strongly ~ (7. — T) ~'/? on the proximity of the temperature T to the critical
temperature 7.

The approach proposed in this letter is evidently of general interest for the theory
of real polymer systems, since it predicts phase diagrams qualitatively different from
those found in an analysis of such systems without consideration of the nonlocal
nature of the functional F{p, }.

One of us (S.1.K.) wishes to thank S. Edwards for useful discussions.
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