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An analytic theory is derived for a basic instability of collisionless gravitating
systems: the radial-orbit instability. Radial orbits arise in a natural way upon (for
example) the formation of galaxies during the collapse of a stellar cloud from an
initial state with an extremely low density. The theory shows that the instability
occurs if the gravitational potential of the system leads to a precession of orbits
with small angular momenta in the direction in which the stars are revolving in
these orbits.

A collisionless collapse of a cloud of stars starting from a highly nonequilibrium
state is presently regarded as a major factor in possible scenarios for the formation of
various stellar systems. For example, it has been shown in several numerical N-body
experiments'™ that elliptical galaxies probably form this way. Only in those cases in
which the initial state of the collapsing system is sufficiently “cold” (having a virial
ratio V=2T/|W| <1, where T is the initial kinetic energy of the system, and W is the
initial potential energy; at equilibrium we would have V"= 1) do the “experimental”
density distributions found as a result superimpose well on the observed distributions”
and therefore correspond to reality. In the course of such collapses, however, a great
preponderance of the gravitational energy released in the course of the compression
would go into radial motion of the constituents of the system of stars: Orbits which are
highly prolate along radius would become predominant. This circumstance would lead
in turn to an instability (which is today called the “‘radial-orbit instability”’): By
heating the system in the transverse direction (transverse with respect to the radius),
this instability would reduce the anisotropy in the distribution of stars with respect to
radial and transverse velocities to a certain critical level. This instability, like most
others which tend to equalize temperatures in a gravitating medium (i.e.,. which tend
to make the medium more nearly isotropic), is basically of a Jeans nature.® We recall
that the classical Jeans instability of a gaseous medium is simply the gravitational
contraction of volumes which are massive enough that pressure forces are no longer
capable of withstanding gravitation (see Ref. 7, for example, for the details). Clearly,
the cooler the medium, the shorter the wavelengths at which perturbations unstable
“in the Jeans sense” begin, i.e., the less stable the medium.

We have a corresponding situation in the case at hand: If we imagine a system
with radial orbits, and if we move these orbits closer together in some cone at a certain
time, then a subsequent closing of these orbits on each other (i.e., the radial-orbit
instability) would be completely natural, since the system is cold in the transverse
direction. Actually, as we will see below, this explanation is not complete: Whether an
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instability occurs depends on not only the fact that there are radial orbits but also on
the nature of the precessional motions of the orbits which arise upon perturbations. An
instability develops only in the case of a forward precession, i.e., a precession in the
direction in which the stars are revolving in their orbits. In the case of a retrograde
precession, the instability does not occur. However, in those cases in which the insta-
bility does occur, it is clearly of a Jeans nature. The only distinguishing feature of this
case is that it would be more accurate to identify the orbits as a whole rather than the
individual stars as the elementary entities involved here. In terms of its importance for
collisionless gravitating systems, the radial-orbit instability is also completely compar-
able to the ordinary Jeans instability for a gaseous medium. Collisionless systems are
at least as common as gaseous systems in the realm of astronomical objects.

The radial-orbit, instability was first pointed out in Ref. 8. It was later discovered
in direct N-body experiments'* and through numerical solution of a linearized kinetic
equation.” In the latter study, and in subsequent papers by the author (see Ref. 10 for
the details), corresponding conditions for the stopping of this instability were also
found. In other words, the minimum kinetic energy of the transverse motion of the
stars sufficient to stop the instability was found.

Antonov'! attempted to analytically prove the existence of an instability in sys-
tems with radial orbits. However, the conclusions which he drew—that any system
with a purely radial motion of stars is automatically unstable and that such systems
have no stable modes—are incorrect, as we have already mentioned. For example, if
the precession of orbits is retrograde, the instability is replaced by a purely oscillatory
(i.e., stable) mode. The only way to derive the correct result is to start with a system
in which the orbits are highly prolate but not purely radial and then take the limit of a
purely radial motion. If we attempt instead to work with the limiting system from the
outset, we run into meaningless integrals (which diverge as r—0).

Since the nature of the radial-orbit instability obviously does not depend on the
particular form of the system, we will carry out our calculations for the simple case of
cylindrical geometry. Working from a linearized kinetic equation in terms of action-
angle variables [respectively I = (1,,1,) and W= (w,,w,)] in its usual form, we can
put this equation in the following form bymeans of the substitutions i, = w, — w,/2

and w, = w;:
oF | F _ 8F, 3% . _(aF, oF,
o7 L imQ, P+ =, 2002 0,4 q,22),
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Here Fy(E,L) = f,(1,,1,) and F are the unperturbed and perturbed distribution func-
tions; P is the perturbation of the potential [ « exp(imiv,), where m is an integer]; Q,
and (), are the frequencies of the radial and azimuthal oscillations of the star in the
equilibrium potential ®,(r); and Q,, (E,L) = Q, — Q,/2 is the precession velocity of
an orbit with an energy E and an angular momentum L. We assume that the spread in
precession velocity, 69, = ( 02,)"?, and the characteristic Jeans frequency
o; = J4rGp, (p, is the density, and G the gravitational constant) are both small:
680,00, <. This assumption means that we are dealing with a system of stars with
nearly radial orbits inside a massive halo, which basically determines the potential ®,
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{without participating in perturbations). Under such conditions there exists a low-
frequency mode [ «exp( — iwt) with w~w,, §Q,,] in which a slow precessional dis-
persal of the orbits is offset by their mutual gravitational attraction.

We seek a solution by perturbation theory, writing F = F'" + F®, where F'" cor-
responds to the “exchange” mode, which can be found from (1) by ignoring the terms
proportional to 2, and to ® < G: @ = 0, IF"/Jw,. In other words, F'"' = FV (E,L)
is a function of the integrals of motion (an arbitrary function at this point; below we
will find a more concrete expression for this function by working from the periodicity
of the solution of the next approximation, F?). The equation for F? is

(2)
—in(1)+imﬂp,F(1)+ﬂlaF -q oF, 8% ; (I)(aFo 0 aFo)

duy ' OE dwy BL TR
Integrating over w, from O to 27, taking the periodicity of the functions F® and ® into

account, and (for simplicity) restricting the discussion to modes which are small-scale
modes in terms of angle, with m> 1, we find the following result:

o F
—(w ~mﬂ(1))F~ (—51;2 + Oy 3E) /@dwl (2)

Invoking the Poisson equation, making use of the small quantity (v — mQ,,), taking
the limit of radial orbits, and carrying out after some manipulations, we find the
following integral equation for the function y(E) = 1/275"®dw,:

_wzx(E):/dEIZK(E,E‘l)x(El), (3)
with the kernel [(F, = §(L)@(E)]

ar

o(5:) VEs o) )

_ 90, (F1, L)
K(E,El)——‘hrG( 3L )

This equation has an eigenvalue ( — w?) ~47GpoR *( dQ,,/dL ), _,, where R is the
size of the system, for a mode with no nodes along E. All the assertions which we
made above then follow. An instability (w?<0) occurs if the orbits precess in the
forward sense, and the relation (J€},,/3L), _, >0 holds. In particular, for a potential
®, = Q%?/2 + b¥*, an instability occurs if b <0, while in the case b >0 we have pure
oscillations instead of an instability. The potential @, is of this nature in the central
region (if there is no point mass there). However, it is the central regions which play
the leading role for gravitating systems, primarily because the density of matter is
highest in these regions. On the basis of this result we can (for example) classify
galaxies on the basis of the behavior of the gravitational potential near the center. A
structure which disrupts the original symmetry (such as a central elliptical bar in a
spiral galaxy) forms if the profile of the potential is smoother than quadratic.
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"The surface brightness 7(R) [and thus the surface density o(R) ] of elliptical galaxies is described well by
the universal de Vaucouleurs law® I(R) «exp] — 7.67(R /R,)]"/%, where R, is the radius which bounds
half the emitted light, and which does not depend on the size and mass of the galaxy.
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