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A nonrenormalization theorem is proved. It leads to the conclusion that a
superconductivity exists in a system of free and interacting anyons. The theorem is
used to prove that a quantization of the transverse conductivity occurs in a
proposed new formulation of the theory of the fractional quantum Hall effect.

Two-dimensional systems of particles with fractional statistics (anyons) have
recently attracted widespread interest in connection with the problem of high~7,
superconductivity and the fractional quantum Hall effect. It has been shown in the
random phase approximation, in a system of many particles with a fractional statistics
which can be described by the parameter 1/N (the value N =1 corresponds to a
conversion of fermions into bosons), that there exist (a) a gapless collective excitation
which corresponds to oscillations of the density, (b) a Meissner effect, and (c) a
superconductivity.! In a formulation as a theory with a Chern-Simons term, the
presence of a massless excitation in the spectrum means the vanishing of a correspond-
ing coefficient in the effective Lagrangian for the statistical gauge field found after an
integration over the fermion field (the initial and induced topological terms cancel
out).? Coleman and Hill* (see also Ref. 5) demonstrated that for relativistically invar-
iant theories with massive fields of matter there is only a single-loop contribution to
the coefficient of the induced Chern-Simons term. Lykken et al.° showed, by analogy
with Ref. 4, that the Chern-Simons term in a system of massive Dirac fermions can-
cels out at a finite density, at a certain value of the coefficient of the seed topological
term. They did not, however, examine the possible existence of infrared divergences,
which might alter the simple calculation of the powers of the external momentum.

Coleman and Hill’s arguments* make it possible to demonstrate, without the use
of the random phase approximation, that a gapless mode exists in a system of nonrela-
tivistic particles with a fractional statistics (1/N). The idea here is that, after the
average magnetic field is singled out, the fermion propagators in the new diagram
technique are the Green’s functions of electrons in a system with N completely filled
Landau levels. In other words, they have a finite gap. It follows from the gauge
invariance and the analyticity of the effective phonon vertices at zero momentum that
only the single-loop diagram contributes to the renormalization of the Chern—Simons
term. An important point here is that the effective n-photon vertex is of order
O(py,...,p, ) in the external momenta p,. In proving this fact, Coleman and Hill* made
use of the relativistic invariance, but that procedure is not obligatory. The reason is
that for n > 2 the vertex may be formed exclusively from gauge-invariant combinations
of fo; and f}; (f,,(a) =d,a, —d,a,, since the combination €"“a,f,, changes by a

583 0021-3640/91/220583-04%$01.00 © 1992 American Institute of Physics 583



total derivative and can arise only for n» = 2. Consequently, there are no infrared
divergences in the integration over the momenta of the internal photon lines, and the
simple calculation of the power of the external momentum in Ref. 4 is meaningful. We
show below that a massless mode also exists in a system of interacting anyons. The
interaction, which we assume to be a binary interaction and independent of the veloc-
ity, is incorporated in a diagram technique through the substitution a,—a, + a, where
the propagator of the field a is ¥(p). If the Fourier transform V(p) of the interaction
potential V(%) has no singularities at small p, the arguments of Ref. 4 apply without
change: Diagrams with « lines do not contribute to the coecfficient of the Chern-
Simons term. If ¥(p) ~1/|p|, then a vertex of this sort is proportional to the momen-
tum p corresponding to the « line and could not lead to infrared divergences, since the
field @ appears in effective vertices with n> 2 (# is the total number of a and « lines)
only in the combination f;, (@, + a, d). A vertex with n =2 and two « lines contrib-
utes to the complete a propagator and cannot change its behavior « 1/]p|. Nor can a
diagram with n = 2 and one a line alter the behavior of the @ and a,, propagators. We
thus obtain a diagram for the polarization operator II,, (p) with two n = 2 vertices
connected by a single @ line, which is O(p*) [for example, component Il,i(p) is
proportional to 5°¥(p)€,p; | and cannot contribute to a renormalization of the Chern-
Simons term. The theorem has thus been proved, at least for potentials which fall off
no more slowly than 1/|%| at large distances (a three-dimensional Coulomb poten-
tial).

Let us apply the formulation of the theory with a topological term and the non-
renormalization theorem which we have proved to the case of the fractional quantum
Hall effect. We consider a system of two-dimensional electrons in a transverse magnet-
ic field with a filling factor v = 1/m, where m is odd. Following Ref. 7, we transform
the wave function (z; = x; + iy, ):

V' (Z,..28) =[] (i""—"—"‘ﬁ)m_l (2, .- ZN). (D)

i<y \= =zl

The new wave function is also antisymmetric, i.e., also corresponds to Fermi statistics.
Going over to second quantization, and introducing the gauge field a,, we obtain the
Lagrangian

L = i+ (8o —iAp—1a0)P —aopo

1 - - 1
BN _ ‘A . 'A»— -2
+2M1/) (8—1A;—1A~—1d) ¢+m4r(m—1)
where the field ¢ obeys Fermi statistics, p, is the density of electrons, A, is the vector
potential corresponding to the uniform magnetic field H = 2mp,, in which the elec-
trons completely fill one Landau level, and 4, is the external electromagnetic poten-
tial. We need to add an electron-electron interaction to Lagrangian (2). This added

interaction lifts the strong degeneracy of the ground state. The theory which we have
constructed, (2), is completely equivalent to the original theory, but it has several

epuaa“auaa, (2)
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features which are characteristic of an effective theory (a Ginzburg-Landau theory)®
[the transformation of (1) to a boson wave function was discussed in Ref. 9]. For
example, quasiparticles with a fractional charge'® correspond to vortices which ac-
quire a finite energy because of the Coulomb interaction. Fluctuations in the system of
vortices and antivortices should correspond to a magnetophonon mode (fluctuations
in the lowest Landau level)." To demonstrate this point, we use the substitution
ay,—a, — a and integrate over the field a. The interaction can then be written

/ didg (e;8:0;)(E) V(Z — ) (€010 ().

This interaction should introduce an energy gap in the quasiparticle excitations, be-
cause of the nonzero statistical magnetic field at the center of a vortex. In this formula-
tion, we can single out an effective Lagrangian which describes the system of vortices.
The proposed formulation is a realization of Jain’s idea’ of the binding of an even
number of flux quanta (fluxoids) by electrons and of an integer quantum Hall effect
for composite entities. This formulation may prove convenient for reaching a better
understanding of the incompressibility of states with v = 1/m. The nonrenormaliza-
tion theorem which we have proved is being used in this case to explain the exact
quantization of the transverse conductivity in a system of interacting electrons.

We integrate over the fermion fields in a functional integral of (2). The effective
single-loop Lagrangian for slowly varying fields ¢, and 4,, is'?

Laslo, ) = 4= (5 B%(a+ 4) = 3787+ 4))

1 1
Hra pra
+oe (a+ A)ud,(a+ A)g + e 1)6 a,0,a,, (3)

where E and H are the electric and magnetic fields (E;(a) = fy;(a), H(a) = €,0,a;).
By virtue of the theorem which we have proved, only the first two terms in (3) can
contain corrections for higher loops; such corrections do not contain an induced topo-
logical term. The Chern—Simons term (for a, ) does not cancel out; this situation
corresponds to a gap in the spectrum of collective excitations. The dispersion relation
for a magnetoplasmon excitation'' corresponding to the field a, is

52(rm — 1)2 1/2
o) = o [ Z )| @

Expression (4) was derived in the single-loop approximation. To calculate the trans-
verse conductivity, we integrate over the statistical gauge field a,, in (3). For the term
with the smallest number of derivatives in the action for the external electromagnetic
field, it is sufficient to consider the last two terms in (3):

1
Se/f(A) = /dszz——e’“’“A,‘a,,Aa, (5)

™m

This result corresponds to the known value 5xy = 1/(27m). This result is exact by
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virtue of the nonrenormalization theorem. We have also proved that incorporating the
electron—electron interaction does not change the quantity in (5). This analysis can
easily be generalized to filling factors v = p/(2kp + 1) (where p and % are integers) in
the first level of the hierarchy of incompressible states,” for which the p Landau levels
are completely filled after a transformation of wave function (1) with m =2k + 1.
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