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A mechanism has been found for fitting a negative binomial distribution to the
fluctuations in the multiplicity of the groups of muons.

Distributions of muon groups with respect to multiplicity were first analyzed by
Chudakov.! He assumed that the fluctuations in the multiplicity of muons generated
by nucleons of given energy obey a Poisson distribution. Recent calculations have
shown,>™* however, that the muon multiplicity fluctuations are not always describable
by a Poisson distribution. In general, they can be described by a negative binomial
distribution

st = ("1470) (122

where k = n2/(D — 1), 7 is the mean value, and D is the variance.

In this letter we wish to point out some factors which would cause a deviation
from a Poisson distribution. To do this, we draw on one possible mathematical inter-
pretation of a negative binomial distribution (Ref. 5, for example). We denote by x a
random quantity which has a gamma distribution with a density

o0 =g (£) #7220

n

We denote by # a random quantity which has, at a fixed value of x, a Poisson (P)
distribution P(n) = e *x"/nl. A convolution of the gamma and P distributions then
gives us a negative binomial distribution:

B(n, f, k) =/g(z,ﬁ,k)P(:c,n)da:. (2)

The variance of a negative binomial distribution is given by the following expression,
according to the theorem for summing variances: D = D, + D, =7*/k + 7.

For events initiated by protons of a given energy, we interpret the negative bi-
nomial distribution in (2) in the following way here: P(x,r) is the distribution with
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TABLE 1.

v z D, NY)

21 - 40 2.381+0.20 2.04£0.41 50
41 - 60 4.19+£0.12 4.47 +0.35 326
61 — 80 5.35 +0.06 4.99+0.20 | 1309
81 -100 6.70 + 0.05 5.98 £0.17 | 2589
101-120 | 7.78+0.05 7.10+£ 0.20 | 2415
121 - 140 | 8.86%0.07 8.471+0.30 | 1647
141-160 | 9.714+0.11 | 10.50 1+ 0.50 | 874
161 — 180 | 10.75+0.16 | 10.97 £ 0.16 | 445
181 —~200 | 11.56+0.24 | 11.28 =1.14 | 198

201 — 220 | 12.701+0.37 | 14.19+ 2.10 92

221-240 | 12.93+0.60 | 10.93 + 2.87 30

241 —260 | 14.00+1.18 | 16.83 + 7.18 12

D Here N is the number of events.

respect to the number of muons which are produced in events with the same total
number (v) of hadrons (we assume charged pions and kaons) whose energy exceeds
the muon detection threshold E, (E,>E,); x is the mean number of muons in events
with the same number v; and g(x,7,k) is the density of events with the mean muon
multiplicity x.

To test this assumption, we show in Table I the results of a random generation of
10* events initiated by protons with an energy E = 100 TeV, with an arrival zenith
angle & = (°, and with E, = 0.22 TeV (this is the mean threshold for the underground
scintillation telescope of the Institute of Nuclear Research, Academy of Sciences of the
USSR). The depth of the first proton interaction is the same for all events and corre-
sponds to z =50 g/cm’. This table compares the mean values (x) and the variances
(D, ) of the distributions with respect to the number of muons in events with a num-
ber of hadrons in the interval from v to v + Av. It follows from this comparison that
the muon spectra within each interval are described by a Poisson distribution. Figure 1
shows the distribution with respect to the number of events in narrow v intervals.
Plotted along the abscissa here is the mean number of muons in these intervals. We see
that the calculated points in this figure can be fitted satisfactorily by a y distribution
with the parameter values 77, = 7.7 and k, = 20. The deviation of the first calculated
point from a smooth distribution is attributed to a nonlinearity of the x(v) dependence
in Table I at small values of v. We considered the case in which groups of muons are
generated in showers initiated by protons at a depth z = 50 g/cm? in the atmosphere.

Figure 2 shows the z dependence of the parameters. The value of k, in this figure
is approximately constant. The slight deviation of &, from a constant value at small
values of z is explained on the basis that the hadron decay probability increases in the
atmosphere at high altitudes. As a result, there is a slight deviation from Poisson
fluctuations in the narrow v intervals, since muon production becomes less rare. At
z=1 g/cm’, for example, the probability for this process is 0.13.
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FIG. 1. Approximation of the calculated
2 N(x) dependence in Table I by a gamma
I07%F + 7 distribution g(x).
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We turn now to the more general case. Specifically, we carry out an analysis like
that above but for the case in which the depth of the first interaction of the primary
proton fluctuates in accordance with an exponential law. Figure 3 shows the results of
a random generation of 15 000 events initiated by primary protons with £ = 100 TeV,
with E, = 0.22 TeV and 8§ = 0°. A comparison of the values of 7, and D, in this figure
shows that, when the additional source of fluctuations is “turned on,” the result is a
non-Poissonian distribution of events with respect to the number of muons in the
narrow v intervals. To interpret this result, we assume, by analogy with (2), that the
fluctuations due to the difference between the ranges for the primary interaction are
described by a gamma distribution with a v-independent value k, = n3/(D, — 1,).
This interpretation is supported by the results shown in Fig. 3. The generalization of
(2) for this case is

- .0

B(n’ﬁ)k) =/9(!I,ﬂ,k2)dy/9($, y:kl)i;;_dz) (3)

where k = f (k,,k,). This integral converges on a confluent hypergeometric function.
It is not a tabulated integral. We accordingly pursue the analysis in the following way.
A negative binomial distribution is characterized by the parameters 7 and k. To deter-
mine the parameter k in (3), we calculate its variance in terms of the characteristic
function
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FIG. 2. The parameters 7,(A), D,(O), and k,(®) versus the depth z.
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The variance is expressed in terms of the derivatives of @(z) at the point =10
(Ref. 6):

D = —¢"(0) + [¢'(0)]%.
Here we have ¢'(0) = i1, ¢ "(0) = — #*(1 + k) (1 + k,)/kk, — 7, and

1+k+k
2+1+2+ﬁ_

D=r
T kaks

(3)

Comparing (5) with the variance of a negative binomial distribution, we find
k=kk,/1 +k +k,
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FIG. 3. The parameters 7,(A), D,(O), and k,(®) versus v in the case of fluctuations in z.

We have thus derived an expression for the parameter k of a negative binomial
distribution in terms of the parameters k, and k,.

We now find the square of the relative fluctuations for a negative binomial distri-
bution in terms of the parameters k,,k,, and 7. From the definition of the variance of a
negative binomial distribution and from (5), we have

D 1 1 1
=S =—+~+4 6
PR ©

=
S| -

For a quantitative estimate of %, we make use of the results shown in Figs. 2 and 3.
From the calculated value of the mean multiplicity, #~8.0, and from the values
k=20 and k,~9.5, we find 6°~0.28. In this case, the value of §? is dominated by the
1/7 term.
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Three processes are thus influencing the fluctuations in the multiplicity of the
muon groups: (1) fluctuations in the shower nucleation depth, (2) fluctuations in the
total number of hadrons by means of which muons form, and (3) fluctuations in the
decays of hadrons. The latter source leads to fluctuations in the muon multiplicity
which are described approximately by a Poisson distribution, as was shown above. The
presence of the first two sources of fluctuations, however, causes a deviation from a
Poisson distribution and leads to a more accurate fit of the muon multiplicity spec-
trum by a negative binomial distribution.

I wish to thank A. E. Chudakov, A. V. Voevodskii, and S. P. Mikheev for useful
discussions.
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