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An exactly solvable model which embodies a simplified version of the Gerasimov—
Lebedev—Morozov program for constructing a complete string theory is proposed
and partially analyzed.

The Gerasimov-Lebedev—Morozov (GLM) program which was recently pro-
posed’ for constructing a complete string theory (i.e., off the mass shell) treats string
theory as a dynamic theory on a suitable configuration space which includes all 2d-
conformal field theories (CFT’s) as “singular points.” It also includes all integrable
models which lead to a connectedness of the configuration space [i.e., a renormaliza-
tion-group (RG) interpolation between two CFT’s which are fixed points of the RG
flux]. In addition, it may contain g-deformations of CFT’s and of integrable models,
which must be included for completeness of the theory.

1. Our purpose here is to construct a simple model in which the basic ideas of the
GLM program permit an explicit constructive realization. We will accordingly discuss
those aspects of the GLM program which are reflected in our model. (We will depart
slightly from the author’s formulation of the GLM program in order to adapt the
general positions to a specific model.) (a) The configuration space includes a certain
set of CFT’s which we denote by ¥ (i.e., we are not including all the CFT"’s as in the
GLM program). (b) For a certain subset of € X % pairs of CFT’s, we construct an
RG flux which connects pairs of CFT’s. Models based on an RG trajectory are incor-
porated in the configuration space. (c) We take a field-theory limit in terms of the
number of fields [SU( ) — WZNW]. This step confers the structure of a universal
Grassmann manifold on the module space (in target space). It also leads to the ap-
pearance of an algebra of double loops. (d) We formulate a dynamic principle on the
configuration space of the models. The action is a functional on an effective loop space
which arises through a “contraction” of two-dimensional loops involving KM loops.
(e) A stochastic quantization of the dynamic system constructed on the configuration
space is carried out by the stabilized Greensite~Halpern-Marinari-Parisi procedure.>*
(f) Quantum deformations (g-deformations) of the models are carried out. They ex-
pand the configuration space.

In this letter we take up the problem of reconstructing the configuration space in
accordance with the procedure outlined above on the basis of affine-Virasoro (4V)
models®® of a special type.” These particular models allow sporadic marginal defor-
mations (which were first observed in Ref. 7) by the space of modules (in the space of
targets) which are Grassmann manifolds.

2. We begin by listing the 4V models which, in our construction, are analogs of
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classical vacuum solutions (CFT’s) of complete string theory. As was shown in Ref. 9,
solutions of the affine-Virasoro control equation®’

£ = Dhteneat® — t°4°! J2, £l — L, £V (1)

for the “inertia tensor” f,,, which determines the form of the energy-momentum
tensor

T(z) =t""(JuJ,,)(z), (2)
constructed on the current algebra Gk,

knap if5Jc(2)
5 +
(z — z)? (z —=2)
allow multiparameter marginal deformations for certain special selections of the cur-

rent algebra & *. We single out two special ansatzes. Specifically, we single out the
root ansatz on SU(N)',

T(z)= 3 5.(E°E~¢ + E-*E%)(2), 4)
a€‘1'+

Ja(z)Ty(2) = + reg.t, (3)

and a diagonal ansatz on SO(N)?,

T(z) = Z S X X9)(2). (5)
1<)
With S; _ 3= =U; = — 13, R¥RY the module space of marginal deformations of these

ansatzes is the Grassmann manifold G, (R~ ") =V, (RV~ ")/ O(c), where c is the
central charge of the Virasoro algebra, and the Stifel manifold is parametrized by the
n-hedral R#, which satisfies the conditions 3,R¥R} = 6" and 2,R " = 0. We thus
have two classes of non-Abelian 4 ¥ models at our disposal: €' on SU(N)' and €2 on
SO(N)2.

3. Let us find a generalization of the Knizhnik-Zamolodchikov (KZ) equation
for an ansatz of the type in (2). We denote by 7 the generators of ¥ in a representa-
tion with a senior weight A4 and the fields ®; which are transformed by this represen-
tation. It is not difficult to see that under condition (1) the field J2 (z) =1, [(7)5
XJ?(z) + J%(2) ()% ] is a current, i.e., a prime field of spin 1. Now making use of
the constraints on the correlation functions which follow from the existence of a null
vector,

x>=(Loy = J_1)|® >

and also using a Ward identity, we find the following generalization of the KZ equa-
tion:

_220 ta @ 7 < ®y(21).-Bn(2n) >=0. (6)

dz; —zj
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The anomalous dimensionalities A(A) for the fields ®, are found from the solu-
tion of the matrix eigenvalue equation

det || tap(r27")5 — B(N)6G 1= 0. )

4. Let us examine the structure of the Hilbert space of models and find the
spectrum of anomalous dimensionalities. In the case of %', all functional representa-
tions of SU(N) with senior weights @,,...,@y_ ; are integrable. In general, the anoma-
lous dimensionalities are split up completely in all representations, and they depend in
a continuous way on the deformation parameters:

Bawr) =3 NS RS RY), ®)

B €A jEA

where 4 is a subset of the indices A C{1,...,N}:34 = J. The Hilbert space contains N
sectors, including the vacuum |0). The sector corresponding to w; is generated by J-
particle fermion composites (¢;"...¢;" ) (z) with unequal indices and has the dimen-

sionality [N]
7l

In the case of €%, there are two classes of integrable representations. The first is
analogous to that presented above, differing from it in that there are no “conjugate”
representations. The second class contains spinor representations with senior weights
o, =i(L1,..,+1) for SO(2n) and o=1(1,1,..1) for SO(2n 4 1). A significant
property of these representations is that their anomalous dimensionalities are indepen-
dent of the deformation parameters R #. Specifically, the generators of SO(N) are, in
the spinor representation,

i
ti; = Z[’Y:“Yj];

in ansatz (5) we thus find A(o) = c/16.

We thus see that the ¢! and %> 4V models are analogs of compactifications of a
boson string onto a torus (C') and an orbifold (C?). The spinor fields which have
fixed anomalous dimensionalities are analogs of the twist fields of orbifoldized com-
pactifications. In addition, the module space of the 4¥ models, G, (RY '), is a com-
pact analog of the module space of boson compactifications.'®

5. We now derive an exact solution of the renormalization-group equations for
AV models with sporadic deformations, following the prescription of Ref. 4. For defi-
niteness we consider the class €'. As the UV fixed point we adopt a point in 4VS
which lies on the SU(N)! manifold of A¥ models with a central charge c. It can be
shown that the structure functions S, in (4) can be represented by the following
ansatz on the RG trajectory:

Sti-t,(7) = RERY 9 (7). ®)
Here we have the following RG equation for the metric of ¢ planes g, :

dg,(7)

—‘i(‘i;—‘ =B {{9})s (10)
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with the B function

ﬁl“’({g}).: '—'g;u/ -+ g;u;g)\V6KA (11)
and the initial conditions

glw('—OO) =5/_“/. (12)
The solution of the RG equations is

G (T) = by fu(T), (13)
where

L p<c—1

f/t(T)“{(1+er)—1’ L=c .

The IR fixed point thus lies on the manifold G, (R ').

6. Let us examine the RG evolution of anomalous dimensionalities. On an RG
trajectory, the anomalous dimensionalities of the fields ®, depend on the RG time 7.
The matrix of anomalous dimensionalities is

A(r,)) = tap(7)(ro7h).
In particular, for the models of class ¥’ we have
1 . Y
Aalr,ws)= igw(ZR;)(Z RYY, (14)
i€EA jeA
and for the spinor representations of the models of class %'? we have

1

= .___I .
16A (o) =c¢ + o

(15)

We have thus constructed a connected configuration space of 4V models which is
a simplified analog of the configuration space of a complete string theory. The remain-
der of the GLM program consists of constructing the N— o limit. The validity of that
construction follows from the existence of a natural topology of an inductive limit,
which may be the undivided configuration space. It is also necessary to include g—
deformations and to make the generalization to an arbitrary Riemann surface Z,. By
virtue of the local nature of the AV construction, there are no obstacles to this general-
ization.

We will take up a formulation of a dynamic principle on a AV configuration space
in a separate paper.

'A. Gerasimov et al., Int. J. Mod. Phys. A 6, 977 (1991).

2A. Yu. Morozov, Mad. Phys. Lett. A 6, 1525 (1991).

3J. Greensite and M. B. Halpern, Nucl. Phys. B 242, 167 (1984).

“A. Giveon et al., Nucl. Phys. B 357, 655 (1991).

M. B. Halpern and E. Kiritsis, Mod. Phys. Lett. A 4, 1373 (1989); erratum ibid., 1797.

310 JETP Lett., Vol. 55, No. 6, 25 March 1992 A.A.Belovand Yu. E. Lozovik 310



“M. B. Halpern ef al., Int. J. Mod. Phys. A 5, 2275 (1990).
’A. Yu. Morozov ef al., Int. J. Mod. Phys. A 5, 803 (1990).

8A. Yu. Morozov et al, Int. J. Mod. Phys. A 5, 2953 (1990).
°A. A. Belov and Yu. E. Lozovik, Yad. Fiz. 53, 1464 (1991) [Sov. J. Nucl. Phys. 53, 905 (1991)].

K. S. Narain, M. K. Sarmadi, and E. Witten, Nucl. Phys. B 279, 369 (1987).

Translated by D. Parsons



