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An asymptotically exact velocity distribution is derived for atoms which are cooled
by a resonant optical field in the method of coherent population trapping. A
narrow structural feature which appears in the distribution function tends toward
a d-function with increasing duration of the interaction with the field.

Aspect et al.' have proposed and implemented a method for cooling helium
atoms. The atoms, in the metastable 225, state, interact on the 23§,-23P, transition
with oppositely directed waves with orthogonal circular polarizations. That method is
fundamentally different from the scheme of Ref. 2 in terms of the depth of the cooling
and also in that the efficiency of the cooling depends only weakly on the detuning from
resonance. The numerical calculations carried out in Ref. 3 established general quanti-
tative aspects of the mechanism, but they were of course incapable of precisely deter-
mining the limiting characteristics of the velocity distribution (or wave-vector distri-
bution) of the atoms.

In the present letter we derive an exact analytic theory for this effect. We find a
distribution function which is asymptotically exact (at long interaction times).

We denote the states by 2°S,(M; = 1,p) = |1,B), 2°S,(M; = — 1,3) = |2,B), and
2°P,(M; = 0,p) = |0,p), where M, is the projection of the magnetic moment, and p is
the wave vector, which gives a quantum description of the motion of an atom as a
whole.*” We can then write a system of equations for the six density-matrix elements’
U(I,ﬁ;l,ﬁ’), G'(Zap);zsﬁ,)y a( 1,.3;2,1—7)'), U(O,ﬁ;o,ﬁ'), U(O,ﬁélal_’)'), and U(O,ﬁ;Z,ﬁ’), which
describe the evolution of the state of the atom as it interacts with the field. Assuming
(dE /#)*(1/8T%) = k> <1, where |d o| = |d,| = d is the dipole matrix element, E is
the field amplitude, and 2I" is the radiative width of the upper level, we can eliminate
the three rapidly decaying elements ¢(0,5;0,5), 0(0,5;1,5), and ¢(0,3;2,p) from this
system of equations. The system of equations describing the evolution of the lower
states then becomes

30’11(5) - 1

5 = =M ()0 (F) + L(E)owa(B) + L (F)oha(5) + 7 A5 + F)),
902:(p) . - A . AR S
ot = I[=M(=5)0n(F) + L' (=F)o12(F) + L(=5)o 1) + 5 AF ~ B (D
92068) - 22 012(5) + 1LE)ons(5) + 17 (<5)oma(F) - NF)ons(p)
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Here 0,,(3) =013+ k1B + k), 0(B) =0Qp—k2p—k), 0,(B) =o(1,p
+k2p—k); k=ow/c is the wave vector of the light; I= (dE/#)*/4;
L(P) = [i(o0 — w0y — (A/m)kp —8/2) —T']1™"Y; @, is the transition frequency;
M@P)= —[LP) + L*(B);N(P) = — [L(B) + L*( —P)];and 8 = #ik*/misthere-
coil shift. The integral incoming term 4, which reflects the influence of spontaneous
emission, is written in a form like that of Refs. 6 and 7. After 0(0,5;0,5) is eliminated,
this term is given by

N L - - L. ., -
A) = 5= [ dOAMGr+ F)ors(i+ )+ (5= 5 Jou(i+ 9)

+N(F+ 8)o12(F+ 5) + N (F+ 8)ot,(F+5)]; |5 =w/e.

At the time at which the field is applied, =0, _)the density matrix is the eguilibrium
density matrix: 0,(3) =0, 0,(B) = W(P + k), and 0, (B) = W(p — k), where
W(p) is the equilibrium wave-vector distribution. We assume that this distribution is
the same for states 1 and 2.

It can be seen from Egs. (1) that the values o,,(B) = 0,(p)
= —0,(P) = DS(p) W(pl), where D is a constant, and p is the projection of p onto
k, cause the right sides of these equations to vanish. In other words, these values
constitute the solution which corresponds to the coherent state mentioned in Ref. 1,
which does not interact with the field. It is thus clear that in describing the solutions of
(1) after a long but finite time we can seek the density matrix in the form
o(p) = W(pl)p(p). It is then convenient to take Fourier transforms in the p compo-
nent of the wave vector and to also take Laplace time transforms:

o0 oo

Fix(z, 2) =/di8'” f dpe*™? piy (p).
o] -00
We also use the symmetry properties p,,(p) = py,( —p), p(p) =pH (—p),
which follow from (1) and the initial conditions. From these properties we in turn
find F,,(x,A) =F% (x,A), F} (x,A) = F|,(x,A). Assuming that the detuning from
resonance is zero, i.e., ® — w, — 6/2 =0, we find

a . " A 3 - . A

—£ =—k*[K_(u+ f)+ K9] — 37 P % ==k K (vt f) + Kop] - fff; ()
26%(1 = G) [ Ky(u+ f) + K_o) + %u =W(z)/T.

Here z=kIx/85; f2) =4{F5(z4) + Fio( = z) |

@(z) =4[F,(2Ad) — F,( —2A4)]; u(z) =ReF(z4); G(z)=sin(ez)/ez; and
€ =28/T. At large z, the imaginary part of F,,(z,A) falls off in proportion to sin*(ez)/
(ez) and plays no further role. The function W(x) is the Fourier transform of the
distribution function at ¢ = 0:

W(z) =Re / e PW(p + k)dp = cos(kz) / W(q)e'=dg.
-0 —00
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The operator K has the effect

z +00
I?in=/e”|‘_’1'n(z')dz'i/e—!‘“"'n(z')dz'.

For long interaction times, a part of the density matrix p which is narrow with respect
to p is determined by the behavior of the functions £, (z,4) or by the functions u, f;
and ¢ defined in (2) at large values of z and small values of A. The wave-vector
distribution is related to the function u(z,4), which is given at large z by (W(z) =0,

u=-2TQ/), Q=K (u+f)+K_ep. (3)
Using the relations (I?+17)’ = — IA{,n, (1?#17)' = — 1%“7 + 27, we easily find from
(2) equations for the functions ¢ = Q — f/«”* and g = Q + f/k*:

d? d? -

Sl ey by T eyt dg— 4, )
where

a=—x? + Ak2/(2T) — M/(4T) + A2/(8T?),

b=—x®— Agz/(zr) ~ A/(4T) - Xz/(sfz),

4rx? 9 2 ) 9
c= (1= G)+ 1+ K%+ X/(4T) + As2/(2T) — A2/(8T?),
d= 41;“2 (1= G)+ 1 — 3k2 + A/(AT) — As2/(27) + A?/(8T2).

From (4) we find a fourth-order equation for . At small values of A, this equation is

22k?
T

=AS(z)yp™® 4 ) - (14 2GK*TS)p = —4x2SW,

where S = [A1 +4T«x*(1 — G)]~". Since at small values of z we have 1 — G =%(5%/
I'?)Z%, we see from an equivalent form of this equation,

=._§.1_/ VBl=I5(1) =4 W (') + AARAGY(2') + AP ())d,  (5)

B =2x&%/T,

that the solution in the limits -0 and z— oo is of the form ¢ = (C/A)e~\B |z|. The
constant C is found from (5) by setting A = 0. It is [we recall that W(0) = 1 and

G(0) =1] C= [26/m/3T + «*] ~'. We then see from (4) that in the limit z— o the
function g is g(z) = C,/Ae=\B |z|, where C,+ C= — (1/T)C, and we have
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Q= — (C/2T")e B |z|. Finally, for large z and small A, we find

1 . I
u(z,,\)=XDexp[——\/2/\/v/I‘|z|], D=[1+mﬂ§] . (6)

Taking the inverse Fourier and Laplace transforms, we find the narrow part of the
wave-vector distribution:

£4io0
e LEpyoT
= pya(p) = —p12(p) = D dr - T,
p11(p) = p22(p) = —p12(p) / Ar T EER (7)

£—ioco
Reé > 0, /pu(p)dp=D

1t is a simple matter to find the values of this function at small and large values of p.
For p<Ay=ku/8J(w/2)(T'/t), we find p,,(p) =D /(7A,); for p>A, we find
p11(p) = (D /m)2A,/ (mp*). On the whole, this function is approximately Lorentzian,
p11(P) = (D /m)A(p)/[p* + A*(p)], with a p-dependent width A(p) which varies
from A=A atp=01to A= (2/7)A, at p>A,. The mean value of these two quanti-
ties, (7 4+ 2/2m)A,, characterizes the width of the narrow part of the distribution
function highly accurately. This width is smaller by a factor of about 1.5 than the
width derived on the basis of qualitative considerations in Ref. 3; it is essentially the
same as the width found by a numerical method (Fig. 8a in Ref. 3).

Equations (6) and (7) embody all the principal features of the cooling mecha-
nism. The width of the distribution in (7) is limited only by the interaction time, so
the narrow part of the distribution function tends toward a é-function as t— oo. In
practice, this width is apparently limited only by the lifetime 7 of the S, lower state
(which is very long, 7=7000 s; Ref. 8), by the classical description of the field, and
(possibly) by the use of a nonrelativistic equation for the density matrix. The cooling
efficiency (the fraction of the atoms which are brought into the process) is determined

' by the constant D, which is independent of the initial distribution (that at ¢ = 0). The
* width of this distribution determines only (a) the time ¢ at which the asymptotic

behavior in (6) sets in and (b) the shape of the background, which is broad in com-
parison with (7), and whose integral is 1 — D. Under the conditions of the numerical
calculations of Ref. 3 (Fig. 11c), we would have «2 = 0.05. The ratio &/T for the
transition of interest would be /T" = 10~ . From (6) we find the value D~0.6, which
is 0.2 below the value found numerically in Ref. 3. It can be seen from (6) that the
cooling efficiency D increases with increasing field intensity, i.e., with increasing «”.
We should bear in mind, however, that this entire discussion has been conducted
under the assumption x* <1, and it is obvious from qualitative considerations that the
value of D could not be greater than the value given by (6) with «* = 1.

An interesting aspect of distribution (7) is that all the moments diverge. In other
words, it is impossible to determine, among other things, an average energy. Clearly,
this stems from the fact that expression (6) is no longer applicable at small values of z.
To find the function u(z,4) for small values of z will require an additional analysis.
That analysis will be reported elsewhere.
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