Quantum Hall state and chiral edge state in thin 3He-A4 film
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The chiral gapless excitations at the boundary of the superfluid *He-4 film give rise
to quantization of the transverse (Hall) conductivity in the absence of a magnetic
field.

The edge states of fermions have been recently discussed for a droplet of two-
dimensional electron gas which exhibits the quantum Hall effect (QHE) under ap-
plied magnetic field.' The fermions at the boundary of the droplet are chiral and
gapless and thus represent the only low-energy fermionic excitations in this system,
since there is a finite energy gap for fermions within the droplet. The neutral super-
fluid *He-4 film represents the QHE without a magnetic field:* The response of the
particle current to the gradient of the chemical potential applied in the transverse
direction (the analog of Hall conductivity) exhibits quantization. However, as was
shown in Ref. 4, this quantization rule is only approximate and is valid in the extreme
limit of the small gap as compared with the Fermi energy. Here we show that in the
geometry which leads to the existence of the chiral edge excitations in the *He-4 film
the quantization of the Hall conductivity is exact.

For the neutral *He-4 film the role of the magnetic field is played by the sponta-
neous orbital angular momentum of the Cooper pairs, which violates the time inver-
sion and 2D space inversion symmetries. The direction of the momentum, denoted by
unit vector J, is fixed along the normal to the film: 1= + . We consider here the QHE
in the following geometry (see Fig. 1): the difference of chemical potentials
1(x3) — p(x,) is applied to the strip x; < x <X, of the film with the given orientation
! = Z and the mass current J is measured in the direction y. We consider three different
geometries: (1) outside the layer there is no *He-4; instead, for example, there is the
planar state which has no orbital momentum (Fig. 1a); (2) the *He-4 film with an
opposite orientation of ] = — % (Fig. 1b) is outside the strip; (3) the *He-4 film
everywhere has the same orientation of 1 (Fig. 1c). Our results for the total current in
the strip for these cases are

70 = T (ufa2) - u(e)) M
70 = 7 (u(e2) — (o)) - (o) o) @
7O =2 p(ea)  plen)) ©

where p is the particle density per unit area of the film, m, is the mass of *He atom,
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FIG. 1. Profile of the chemical potential applied to the strip of the *He-4 film in three different geometries.
(a) There is no / vector outside the layer; {b) /is oriented in the opposite direction outside the layer; (c) /is
oriented everywhere in the same direction.

and N is related to the number of the chiral fermions at the boundary of the layer,
which depends on the film thickness and increases with increasing thickness. NV is even
for the *He-A film and is an integer for the *He-4, film. Since this result does not
depend on the particular features of the system, we calculate the current using the
simplest model for the *He-4 film.

In the thin *He film the dimensional quantization along z is important, and the
quasiparticle spectrum in the normal *He film depends on the index g of discrete level
of the motion along z and on the two-dimensional momentum k = (&, ,k, ). For the
simplest model of the noninteracting levels ¢ the spectrum of the particles at each level
of a normal film is

kZ

2m 3

ea(F) = £4(0) + (4)

where ¢, (0) ~#°q*/m,a’; here a is the thickness of the film. At each level g, which is
below the chemical potential, £, (0) < g, the Fermi liquid is formed with its own Fermi
momentum K, :

L'Z

SFq 5
T e (0) . (5)

The Cooper pairing leads to nondiagonal matrix elements between the particle
and hole states. The relevant Bogolyubov—Nambu matrix for the fermions at the ¢
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level in the *He-4 film is the 2X2 matrix, provided that the spin part of the order
parameter is discarded and the interlevel interaction is ignored. It is expressed in terms
of two vectors &' and & in the x,y plane:

H, = (gq(k ) )T3+ch é! *rl—ch-éQ ™, (6)
where 7 are the Pauli matrices in the particle-hole space, and cq are the amplitudes of
the nondiagonal elements. In the equilibrium *He-4 film &'1&% |é'| = |&*| = |1, and
[ = 2'x . The energy spectrum

By (%) = (eq(k) = 1) + jl(E - 1) + (B - £°)7) @)

is nowhere zero in the equilibrium *He-4 film, by analogy with the two-dimensional
electron gas in the QHE regime.

The zeros in the spectrum appear at x = x; and at x = x,, i.e., at the edges of the
*He-A strip. We consider first the case (2), where the edges of the layer are the
borders between the domains with different / orientations. Since the topological prop-
erties of the spectrum are insensitive to the details, we chose the simplest realization’
for 2'(x) and &2(x):

e z) =z , é&z) =-3 tanh(m - xl)tanh(z — 2
{B ¢
where &5 is the size of the domain boundary, which is on the order of the coherence
length, £, > K - '. We assume that £, < (x, — x,). Far from the boundaries & = —)
at x <x; and x> X, and & &* = J at x; < x < Xx,, which corresponds to 1= —zat X <X,
and x> x,, and 1=%at X, <X < Xy

) (8)

Since £ >k ;- !, we may first consider the spectrum in the semiclassical approxi-
matjon, in which the spectrum depends on the momentum and on the coordinate:
E (k #) in Eq. (7) with 2'(x) and &*(x) from Eq. (8). The energy is zero at the lines
(x=x,k=0,k, = £ kg,)and (x=x, k, =0, k, = & kg,) in the 4-dimensional
(k 7) space. These are the straight lines along the y ax1s of 4D space. These manifolds
of zeros have the topological stability. The explicit expression for the topological in-
variant, which supports the stability of the zeros, may be constructed” in terms of the
Green’s function matrix G, (@,k, x):

= FAT CneAY tr/clS7 Gé?,‘G‘le’)l,G'lGé),\G'1 . ¢
For the given value of y the integral is taken over the 3D sphere in 4D space (o, k,, k,,,
x) about each zero point of the spectrum, say, (0 =0, x=x, k, =0, k, = kg, ).

This integral is m = 1 for zeros at x = x, and m = — 1 for zeros at x = x,, whxch can
be checked in the model of the noninteracting levels, where the Green’s function
matrix is diagonal in level g indices:

— 1
Ggplw, k, ) = §,p —————a— . 10)
gplw, &, T) qpiw+Hq(k,:c) (

The number of zeros in the semiclassical energy spectrum E, (Iz, #) is thus 4q, for each
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domain boundary, where 2¢, is the number of the Fermi liquids in the normal state: g,
is the number of the levels of the quantized motion along z below 1, and we take into
account the double degeneracy over spin; for the *He-4,, where only one spin compo-
nent forms the Cooper pairs, there is no factor 2.

The index theorem relates the number of zeros in the semiclassical spectrum with
the same number 4¢, of the gapless fermionic modes which are localized at the bound-
ary in the exact quantum-mechanical problem. The exact energy spectum of the fer-
mions, E, (k,), depends on the momentum k, along the domain boundary. In the
simplest realization of the structure of the domain boundary,” the Hamiltonian which
defines the spectrum, say, at x =x, and k, =k, is

9 _
Hy =vpg(ky — kpq)ms + Cqu(—iB—) - chpqtanhu T2 . (11)
z

3:

Each Hamiltonian has zero-mode eigenfunction, the spinor ¥ = (u(x), v(x)):

v=(0, cosh—Sé,)- . s=kren (12)

Each mode produces the gapless branch of the fermionic spectrum, which crosses zero
value at k, = k,. These are one-dimensional Fermi liquids.

It is important that the symmetry with respect to k, - — k, is broken here: in the
vicinity of the Fermi points 4- kj, the spectrum is

Eo(q, ky) =sign(ky) (eq(ky) — 1) = vrg(ky F kpg) (13)

which corresponds to the right moving zero fermionic modes at the domain boundary.
There are only 4¢, right moving gapless fermions localized at the boundary at x = x,
and the same number of the left moving chiral gapless fermions are localized at x = x,.

Because of this asymmetry, there is net linear momentum and therefore a ground-
state mass current in each of the domain boundaries. The magnitude of the vacuum
current can be determined by using the gradient expansion,® which holds, since
&pky> 1. The expression for the current in the inhomogeneous order parameter field
can be obtained in terms of the phase of the order parameter:’

e dxme e ® e 18 e B
J(ﬂ—izk7lq(k,f')‘é)—r~q’(k,;)+§g;;[ gk”q(k,ﬂﬁ:@(kﬂ ]
g,k ‘Jykv

le~> - ,0 8 8 8, -
—5 S Eng(B,7) (2 ==~ == 52) @R ), 14
ql'
nq(E)=l(1-“'(k)f”) . tan a(F, =) (15)
2 By(k,7) k-&(z)

The first term in Eq. (14) does not contribute to the current along y. The integra-
tion of the second term, which is a full derivative, over x from — « to + o, leads to
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the regular contribution

- h
Jrcgul-’\r ZL!? ( (I”) p(icx)), (16)

This contribution, which exists even in the absence of the edge chiral staes, is related
to the edge currents produced by the orbital momentum of Cooper pairs L= ﬁpl (it is
#il for each pair of *He atoms of this p-wave superfluid):

+o0 .
rcgula.r= 2/ dez V x (17

The third term, which is concentrated in the domain boundaries, gives the contri-
bution from the chiral edge states. Since

nalF, ) (g e 2 )(F, )

=sign(ky) 27[6(z—x1)~6(z —z2)]6(ks)O(ker — k) (18)

we obtain the following expression for this anomalous contribution to the current:

Tan(e2) 4 Fanlex) = e S (les) = 4 (0)0(az2) — ,(0)
-9 L (1(z1) = £4(0))O(u(z1) — €,4(0)) =@§%(#(¢C2)—#($1)) v (19)

2wh £~
q

where N =2, (N = q0 for the *He-4, film).

The anomalous current can be also obtained directly from the exact spectrum of
the chiral mode in the vicinity of the Fermi point in Eq. (13). The change 8u in the
chemical potential leads to a flow of the fermionic levels &, through the Fermi points,
and therefore the linear momentum « Sy is created from the vacuum. The response of
the anomalous current 3, k,© ( — Ey(q.k,)) to u is thus

an m3
= ms 20
d,u 27rh Z O(k =N 2rh (20

which is the variation of Eq. (19). This momentum creation is the manifestation of the
same chiral anomaly which was discussed for the bulk *He-4.*°

The total current in the geometry of Fig. 1b is the sum of the regular and anoma-
lous terms, Eq. (16) + Egq. (19), which leads to Eq. (2). In the geometry of Fig. la,
there is no / outside the layer, and the regular contribution from Eq. (17) is absent. As
for the anomalous contribution, one should retain only half of it, since the edge of the
3He-A4 contains only half the number of the chiral fermions; this leads to Eq. (1). In
the geometry of Fig. lc, there are no edge states at all and one has only the regular
contribution in Eq. (3); this case, which is considered in Ref. 4, has no exact quantiza-
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tion, although in the limit of the weak interaction between the fermions the quantity
dp/du approaches stepwise behavior. The exact quantization of the current is related
only to the chiral edge states. From Fig. 1 and Egs. (1-3) it follows that the current
obeys the summation rule, which follows from that for the Cooper pair orbital mo-
mentum: in particular, /@ 4 J® =27,

Note that the response of the current in this analog of QHE is quantized in terms
of the same topological number N as the Chern-Simons term in the *He-4 film, which
determines the spin and quantum statistics of the particle-like solitons.'”

I am indebted to M. Stone, who attracted my attention to the edge effects. This
work has been supported through the ROTA cooperation project between the Acade-
my of Finland and the USSR Academy of Sciences.
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