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If the potential of the effective scalar which controls the de Sitter (inflationary)
stage in the early universe has a singularity consisting of a rounded change in slope,
a step of a universal form arises in the spectrum of adiabatic perturbations. Along
with this step, there are superimposed modulations. If the singularity in the
potential is instead a rounded jump, a hump appears in the spectrum.

One cosmological scenario has an initial stage of a quasiexponential expansion (a
de Sitter or inflationary stage). The decay of this stage results in the appearance of a
hot Friedmann universe. One of the primary advantages of this scenario, as has been
stressed repeatedly, starting in Ref. 1, is that any specific version of it can be refuted or
confirmed with the help of observational data on the contemporary universe. The
predictions which are easiest to test are those regarding the spectrum and statistics of
adiabatic perturbations of the Friedmann metric, which lead to the formation of galax-
ies and other compact objects in the universe. In all simple versions of the inflationary
model it is assumed that the inflationary stage is produced by a single effective scalar
field (an inflaton) with a potential V(). In the inflationary stage, this field is in a
slow roll, with

16| < 3H|o]; $* < 2V (p), (1)

where H = a/a, a(t) is a scale factor of the isotropic cosmological model, and the dot
means differentiation with respect to ¢ The Fourier components of the gravitational
potential &, = (27) 732 f O(F)exp( — ikF)d>r are then S-correlated Gaussian ran-
dom quantities ({(®;) = 0; (P; P;. ) = P> (k)P (k — k'), k = |k |) with an approxi-
mately flat spectrum:

dln(k3@2(k))
7 1. 2
dlnk < (2)

This problem was first solved completely in Ref. 2 (the results found in the
second and third citations of Ref. 2 are identical when expressed in the same way; the
result found in the first paper within a numerical coefficient). We might also cite some
earlier approaches to this problem.’

Under inequalities (1), and with a small spatial curvature—this case sets in right
after the beginning of the inflationary stage—we have H >~ 87 GV /3 and ¢z —V'/3H
(¢ = #i=1, and the prime means the derivative with respect to ¢). Conditions (1) can
then be rewritten in terms of limitations on the derivatives of V-
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[V"| < 24xGV; V" « 482GV2. (3)

On the other hand, the absolute value |F’| cannot be too small for the range of ¢ in
which we are interested here in the inflationary stage. This range corresponds to
length scales from 1 kpc to 10* Mpc today. From the condition that ® be sufficiently
small in this region (4<107 in the notation of Ref. 4) we find

V'] > 10°(GV)3/2. (4)

The model which currently enjoys the greatest popularity is one of cold particles
with a total density of matter equal to the critical density (according to the prediction
of the inflationary model). For this cold-particle model, prediction (2) agrees well
with the shape of the observed correlation function of galaxies (when a nonlinear
evolution is taken into account for redshifts Z<10) for length scales L = (1-20)4 5
Mpc, where A5, = H,/50, and H, is the Hubble constant, in units of kilometers per
second per megaparsec. At L = (50-100)4 5, '"Mpc, however, the value of k°®?*(k)
increases, apparently by a factor of at least 3 in comparison with its value in the region
L = (1-20)4 5, ! Mpc. This effect follows from recent results on the spatial distribu-
tion of galaxies (o« A®) at these scales.” It also follows from data on the large-scale
peculiar velocities of galaxies® ( «« V®). On the other hand, the distribution of peculiar
velocities can be described very accurately as Gaussian.” These data refer to the same
interval of length scales as that in which the amplitude ® is greater than that in the
cold model with a flat spectrum. The best upper limits on the fluctuations in the
temperature of the background radiation, AT /7, at the corresponding angular scales
(0.25-1°% Ref. 8) would allow a further increase in the amplitude by a factor of about
2. Upper limits on the nondipole anisotropy A7 /T at large angles’ rule out an explana-
tion of this rise based on a scale-invariant spectrum & *®*(k) <ck” !, n <1, which
arises in (for example) the “new” inflationary model with a potential
Vi) =V, —~M?p?/2, M>*~H} = 87GV,/3, or in a so-called power-law inflation
fa(t) <t ?, p>1].

There are several ways to obtain a scale-invariant spectrum of adiabatic perturba-
tions, while retaining their §-function correlation and Gaussian nature: (A) Abandon
the conditions of a slow roll, i.e., (1); (B) introduce several effective scalar fields
which can create a de Sitter stage (in taking this approach, we run into the models of
double'’ or muitiple'" inflation); (C) keep the initial flat spectrum, (2), but switch
from the pure cold-particle model to mixed models. These mixed models would consist
of cold particles plus a light neutrino or cold particles plus a cosmological constant,
with the resultant density of all types of matter being equal to the critical value.
[Where it appears in observables, the initial spectrum ®’(k) is multiplied by the
transfer function ¢?(k), which arises in the transition from the radiation-dominated
stage to the matter-dominated stage at Z~ 10*, and which depends on the contempo-
rary composition of matter in the universe. ]

In the present paper we consider the first of these possibilities. The first differs
from the second in that there are no problems in choosing initial values for the scalar
field. It differs from the third in that fewer restrictions are imposed on the perturba-
tion spectrum. In order to maintain the agreement with the shape of the correlation
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function of the galaxies in the region (1-20)%4 ' Mpc, and in order to avoid going
beyond the limitations which follow from AT /T at large angles, it is reasonable to
assume (in contrast with Ref, 12, where a polynomial potential was discussed) that
inequalities (1) and (3) hold everywhere except in a narrow region ¢ ~¢, (actually,
we are violating only the first inequality). The spectrum then becomes fiat far from the
point k, = a(t,)H,, where we have H§ = 87GV(¢,)/3, where f, is the time at which
the equality ¢ = ¢, holds (for simplicity, we shift the origin of the time scale to satisfy
t,=10). Weset x = ¢ — @,. If ¥(x) has a singularity in the form of a rounded jump in
the second derivative or a weaker singularity near the point x = 0, then it follows from
the satisfaction of conditions (1) before and after passage through the point x = O that
the perturbation spectrum remains flat.

The minimal local singularity in ¥ (x) sufficient to give rise to a nonflat spectrum
is a rounded slope change:

V(z)=Vo+v(z), v(z)~ A;z, z > zg,

~ Az, <0, |z|> zo, (5)

U(O) = O, A+ > 0, A_ > O, A+ #A._,

where x; is a scale width of the transition region. From the satisfaction of conditions
(3) and (4) before and after the transition through the change in slope of the poten-
tial, we conclude the following: max(4,,4_)<G ~V?H?, min(4,,4_)>H3. If the
slow roll is to be disrupted during the transition, we must have (4, — 4_| R H }x,. It
follows that we have x,< G ~ /> and x, <G ~'/?>and max(4 ,,4 ) x,< V;. In calculat-
ing a(f), we can thus ignore the contribution of v to the potential, and we have
a(t) = a(0) exp(Hyt) near the transition.

We next consider the case min(4 |4, —A_|)>H 2x,, in which the deviation
from a flat spectrum is at its greatest. In this limit the spectrum does not depend on
the shape of v(x) or the value of x,; it assumes a universal form. In this case, the
region Ax~x, is crossed over a time t,~x,H,/4, <H ; '. We thus have

_ | —A4/3H,, t <0,

v { —(A- 4+ (Ay — A)e 3HoY)[3Hy, 1> 0, (6)

regardless of the form of v(x).

The equations for small inhomogeneous perturbations of the field ¢ and for scalar
perturbations of the metric can be reduced to a single equation for the gravitational
potential’® ® or the quantity'* & [in the synchronous frame of reference & = 8¢ — @ /
6H(A + u), where A and u are Lifshitz notation for scalar perturbations of the met-
ric']. It is more convenient to use the second of these quantities here. The equation
for its Fourier component is

S . k2 o
Ex +3HE + <Eg 'f‘mej) £ =0,

, _dV o dv H
UL SR o (LI I
Mt T gE T H gt (H)

(D
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Since we have H= — 47Ggp?, we can replace the quantity mZ, in (7) by
[3H (4, —A_)/A4,.18(1) in a leading approximation under the condition
k2<kl(|4, —A_|/H}x,), by virtue of the inequalities written above (the term
d?V /dg ? makes the basic contribution). The correctly normalized solution for &, at
t <0, which corresponds to an “in” vacuum as f— — oo, iS

= Ho ~1ks i — _d_{'__________ -1
5}:*7-2:56 ’(—n+z>, Ui /a(t) (Hoa)™". (8)

At >0 we then have
_ Ho ik i L)eikn (_ _ 1))
b= = (a(k)e ( n+ k) +B(k)e =3

3i (A ko ké)
e=l+2 (=2 1)20 (142
! 2<A 1)k< )

laf? — 1617 = 1. ¥

The quantit_y |B(k) {2 can be interpreted as the number of pairs of scalar particles
with momenta k and — k which are created because of the rapid variation in ¢.
However, we are interested in only that part of the effect which contributes to a
growing adiabatic model of the perturbations. This part is determined by the asympto-
tic behavior of &, as t— w0 (7—0): &, (o0 ) = iH,/\/2k> (@ — B). Transforming from &
to ® in the standard way, using the quantity #(#) = u/3, and assuming a(¢) «<¢?/> at
present, we find the contemporary perturbation spectrum in the linear stage:

t

I " 3
@‘—;‘Zh l——(;/adt “—--—1—0“}1,
0
1818

2 kYN 2
Az P <E>C(L)’
A 1 1 2
Di=la-pB*=1-3(=—=-1} - l——|=n?2 +—c052y>
o= ] <A+ >y<< y“> Ty

2 2
+2<£‘__1> _};<1+-—17) (1+-—1;+<1——1;>cos2y———sin2y>,
2\ Ay v’ v’ v’ v’ Y
, D0)=4-/44,  D(eo)=1. (10)

The function D(p) is a step (with superimposed modulations) with an increase toward
large scale values if 4 _ > A4, and toward small scale values in the opposite case. The
shape of this function depends on only the ratio 4 /A4 . This function has two other
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interesting properties. (1) In the case 4_ > A, the function D(p) falls off slowly
toward large values of y (this behavior corresponds to the formation of a large-scale
structure in the universe):

D~ 3(A_JA )y cosylfor A > Arand 1 €y < A_/A,.

(2) In the case A_ <A, the function D(y) falls off «y ? toward small values of y as
long as the condition D> D(0) holds. It has a deep minimum at y = 54_/24 . The
value of this function at the minimum is ~D(0)(A4_/A4..) 112 (a similar effect has been
seen in some numerical calculations for polynomial potentials'?).

With 4_/4, =3-3.5 and k, ' = (100~150)/ 5 ' Mpc, the spectrum in (10) is
quite successful in explaining the observational data on 8p/p and on the peculiar
velocities at large scales. It does not contradict the upper limits on AT /T anywhere in
the entire angular range'® (the shift parameter at length scales < 104 5, ' Mpc must be
b =2.2-2.5). A critical test for this spectrum is the value of AT /T at large angles. In
particular, the expected quadrupole anisotropy is (AT /T),~=(6-7)X 1075k 5L
Since we have A ,<1.3 for the model of cold particles (because of the age of the
universe), spectrum (10) can be regarded as definitely refuted if observations reveal
(AT/T) 4 <3X 10~°. If we wish to explain the observations while adhering to the
hypothesis of local singularities in ¥(¢), we must thus switch to the type of singularity
which comes in terms of degree of nonanalyticity: a rounded jump in V(g).

If we assume that the size of this jump satisfies A<V, [again, only the first
inequalities in (1) and (3) will be violated], and if we assume that the values of d¥/
de are equal far from the singularity (¢ = @,) (the latter assumption is made for
simplicity and could easily be abandoned), we find

V(z)=Vo+ Az +v(z), v(z)= A/2, z>> o,
~-Af2, =<0, |z|> zo, (1)

z=p—ypo, v0)=0, A>0, A>0.

It follows from (3) and (4) that we have H3 <4 <G ~'"*H?2. Condition (3) is
violated at |x| S x, if AR H }x3. Furthermore, if the change in X is to be important, we
must have AX AZH ;% It follows that we have x, <G ~ "2 and A> H?}. We assume
below that the strong inequalities A> H 2x2 and A>A*H ,* hold.

In this case the quantity mZ; in (7) has a singularity stronger than a -function in
the formal limit x,—0 (as before, the term d?V /dg > makes the basic contribution).
The result for the spectrum is thus nonuniversal; i.e., it depends on the shape of v(x)
and on the value of x,. Skipping over the calculations, we write the result. If 4> H % x,,
then the function D(k /k,) in (10) (in which we should set 4, =A4_ = A4) is a pla-
teau with a flat top and superimposed modulations: D(y) = 3y2AH,/A4 |sin y|>1 at
l1<y<A/Hix, Aty<l, we have D( y) « y* as long as the condition D> 1 holds. The
quantity D(p) has a deep minimum at y* = 54 /HJ2A < 1. The particular way in
which D(y) decreases at y> 4 /H ;x,depends on the asymptotic behavior of the quan-
tity = A/2 — v(x) as x— o0. If Decexp( — x/x,) as x-> oo, then
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- 3V 2AH() 1 52 6H§:c0y

at y>1 and D> 1, so we have D(y) <y~ ' at py>A /H]x,. If, on the other hand, we
have Docx ™7, then we have D(p) cy 77+ 2,

(12)

For A < H }x,, the plateau at the crest of the hump disappears, we have a maxi-

mum value of D(y) ~A/Hyx,>1 at y~3, and the decays on both sides are of the
same nature as in the preceding case. If a jump in the potential is stretched out, and
the time taken to cross the jump region is longer than H; ', the result is precisely the
opposite: a well instead of a hump is formed in the spectrum."’
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