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The convection which occurs in the divertor region of a tokamak can be described
by contour dynamics. The results of a numerical solution of the contour equations
corresponding to a hot tube which is floating up and to an instability of a stepped
temperature profile are reported.

1. Hot plasma tubes were observed floating upward in the divertor region of a
tokamak in the experiments of Refs. 1 and 2. In this letter we show that a model
system of equations for plasma convection describing this phenomenon makes it possi-
ble to introduce contour dynamics in certain cases. We report the results of a numeri-
cal solution of contour equations corresponding to a tube which is floating up and to
an instability of a stepped temperature profile [see (4)].

2. A detailed derivation of the system of equations for convection in a divertor
region is given in Ref. 3, where the conditions for the applicability of these equations
are analyzed. Here we simply point out the procedure for deriving the initial equa-
tions.

We assume that the magnetic field is parallel to the z axis. We use the standard
method of plasma theory for deriving nonlinear equations in a magnetic field. We
substitute the longitudinal current from Ohm’s law j, = — 0d,¢ into the current con-
tinuity equation

9:: + V31 =0. (1)
We find the transverse current from the transverse MHD equation

We can substitute the drift velocity U = (¢/B)[2,,V¢] into the left-hand side of this
equation; on the right-hand side we need to allow for the variation of the magnetic
field (this variation is responsible for the convection). For simplicity we assume that
of the two factors in the pressure, p = n7, only the temperature is perturbed. As a
result, we find

(8e+(c/B)[V, VI.)AL$ = —(c B/ pc*) 02 ¢+ (B[ Mc)
x [VT, V(1/B)). +(u/p)B3 . 3)

We describe the temperature by the model heat-conduction equation
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After an average is taken over z, the terms with d 2 are replaced by — 1/L?, where L is
the distance along the magnetic field from one divertor plate to the other, and the
average of V(1/B) is proportional to the curvature on the outer side of the torus.
System of equations (3), (4) becomes two-dimensional. If we now understand T as
the temperature perturbation, and if we take the unperturbed temperature gradient
into account, we find, in the corresponding normalizations,

(8: +[V$, V].)A¢ = v1¢ + v2a?¢ — Ty, (5)

(8 + [V, V)T = —xa T + x2 AT — B3y, (6)

where « is the effective gravitational force, which is proportional to V(1/B), and £ is
the normalized unperturbed temperature gradient.

Equations (5) and (6) are very similar to the usual equations for two-dimension-
al convection.* The potential ¢ corresponds to the stream functions, & corresponds to
the thermal expansion coefficient, /3 is the temperature gradient in both cases, v, and
Y2 are the usual viscosity and thermal diffusivity, and y, characterizes the heat ex-
change with the ends. The quantity v, apparently has no analog in the case of a liquid.

3. We now make a decisive simplification: We assume that the convection is slow,
in the sense that the viscous terms are much larger than the inertial terms in (5). If we
also ignore the equilibrium temperature gradient (3 = 0) and the transverse thermal
conductivity (y, =0), we find the basic system of equations in the corresponding
normalizations:

T, = ¢+ A%, (M
(8 + [V¢,V].,)T = —vT. (8)

Interestingly, if we replace (7) by T'= ¢ — A¢ and ignore the right side of (8), we
obtain the Hasegawa-Mima equation. Equations (7) and (8) can be written as the
single equation

(9 + [Vby, VL) (¥ + A%) = —v (¢ + &%), (9)
where ¢, = ¢. The substitutions y—e~ "¢}, —e "' —¢ put (9) in the form
(0 + [Vihy, V1) (0 + a%) = 0. (10)

Equation (10) allows us to introduce contour dynamics (see Ref. 5 and the papers
cited there). Specifically, we assume that the temperature T'= ¢ + A’y initially takes
on the value 1 in a certain region (), while it has the value O outside ). Then for any
point R outside 1 we have

wity= [ @G-,

N

1)

where G is the Green’s function of the operator 1 + A?, given by
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G(r) = /dkk(l + 68 o (kr), (12)

and J, is the Bessel function. From (11) we find

¢(ﬁ)=/d2r3yG=/dgrayG=/ds(Bz/Bs)G((é-—f‘(s)[), (13)
Q

Q Q

where F(s) is the boundary of (, and s is an arbitrary parameter. Evaluating the
gradient in (13) from d7/dt =9={[¢,,V¢], we find the equation of the contour mo-
tion:

0uits) = [ ds(82/0")F(17Te) = 7 )DIEw, 7le) = (), (14)

where the function F is found from the Green’s function G:

F(r)=(1/r)G’(r)=(1/r)/dkk"’(l+k4)“1J1(Ef'), (15)

Here J, is again a Bessel function.

4. An unexpected result is that the numerical simulation of (14) leads to struc-
tures which are very similar to those that are found in a direct simulation of the
complete system of equations, i.e., (5), (6) (Ref. 3). For example, for an initial
condition corresponding to a stepped temperature profile—a slightly curved line run-
ning nearly parallel to the x axis—some “mushrooms” (Fig. 1) characteristic of con-
vection form. Similar formations are found in the convection of a liquid.*’ An initial
condition in the form of a closed contour leads to characteristic drop-shaped forma-

FIG. 1. “Mushrooms” which form from a nearly straight
initial contour as a result of the instability.
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FIG. 2. Hot tubes which are floating up. The
initial contours are ellipses.

tions which float up (Fig. 2). These formations have been observed in the simulation
of the complete system of equations, (5), (6) (Ref. 3).
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