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A model which includes a Kondo effect and a transition to a magnetically ordered

state is proposed. In the limit of a high multiplicity of the degeneracy, this model is
exactly solvable. The competition between the Kondo effect and the ferromagnetic
ordering of localized moments is analyzed.

One of the most interesting aspects of the Ce- and U-based heavy-fermion com-
pounds is the competition between the Kondo effect and magnetic ordering.'? Despite
extensive theoretical work (see, for example, some recent papers’™ and the papers
cited therein), this problem remains unresolved.

In this letter we wish to propose a model which describes the interaction of
conduction electrons with localized moments and which has the following important
features: (1) In the limit of a high multiplicity of the degeneracy, N-» 0, the mean-
field theory yields an exact solution. (2) A transition to either a Kondo state or a
magnetically ordered state is possible within this exact solution. (3) The nature of the
magnetically ordered state is determined by that magnitude of the wave vector at
which the seed magnetic susceptibility of the gas of conduction electrons has its maxi-
mum. The determining factors here are the specified band structure, topology of the
Fermi surface, and distribution of localized moments over the lattice of the skeleton.

We are reporting a study of a competition between the Kondo effect, which leads
to the formation of a heavy-fermion state, and the ferromagnetic ordering of localized
moments. For a certain specific value of the parameters of the model (as discussed
below), we find that if the Kondo temperature T is higher than the ferromagnetic-
ordering temperature T, then the appearance of Kondo screening of localized mo-
ments suppresses the ferromagnetic transition. In the opposite case (7x < T,,), the
appearance of a spontaneous magnetic moment suppresses the Kondo effect.

We should point out that the model proposed here provides us with a regular
method for constructing a perturbation theory in the reciprocal of the multiplicity of
the degeneracy (a 1/N expansion). In the limit N = 2, the model is equivalent to a
Kondo model with an anisotropic interaction.

Let us examine the system described by the Hamiltonian
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Here the operators ¢,;;, ¢,z create and annihilate conduction electrons with a wave
vector k and an orbital quantum number m. This quantum number takes on values
— j<mgj. The degeneracy multiplicity is N = 2j + 1. The operators /', f,.. create
and annihilate localized electrons at the points with the coordinates }a. We define the
spin operators .S¢ and s by

= %Zm.fs‘tafma) 52 = %chjnacma- (2)

The number of f electrons at the points _I_éa is fixed by the condition

ijr;afma:qON' (3)

With J, = 0 and J> 0, Hamiltonian (1) is the Cogblin—Schrieffer Hamiltonian,®
which is widely used in describing the thermodynamic and kinetic properties of heavy-
fermion compounds.”® Making use of the commutation properties of Fermi operators,
we can show that at N = 2, i.e., for spins j = 1/2, Hamiltonian (1) is the same as the
anisotropic Kondo Hamiltonian
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where 7-" =3¢ TE Crras Tfa = 3f F Th o Cowas and 7# are the Pauli matrices. The
exchange interaction constant is J, = J + J,/8. The value J; = 0 thus corresponds to
the isotropic case. For definiteness we assume J, J; >0 below.

In the Matsubara temperature technique, the partition function for model (1)
under condition (3) can be written as a functional integral over Grassmann fields ¢,
¢, /1, fand Bose fields b*, b, ¢*, ¢, A:
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For N> 1, the integration over the Bose fields can be carried out by the method of
steepest descent. At the saddle point we set

bo(T) = b5 (T) =ba, T1¥a(T) = ha, $5(7) =My, Aa(7) = €50 — p. (7)

Here is the physical meaning of these parameters: b, determines the effective param-
eter of the hybridization of ¢ and f electrons at point «; 4, determines the local
spontaneous magnetic field which acts on the local moment at point «; M, is the
magnitude of the spontaneous moment (M, = (S*)/N); and €, determines the effec-
tive position of the degenerate / level. As a result, we find the following expression for
the free energy:
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The Gaussian functional integral in (9) can be evaluated easily once the structure of
the ground state has been determined. The values of €,,, b,, 4,, and M, are found
from the solution of the system of equations
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To determine the type of magnetic order, we consider the static magnetic susceptibili-
ties of the sublattice of localized moments and of the gas of conduction electrons. For
this purpose we need to find the following correlation functions:
T z T z z
Xsap = 37 (Salwn = 0)S%(wn = 0))y Xeap = 77 (sa(wn =0)sh(wa =0). (1D
These functions are related to the magnetic susceptibility by the simple expression y;
= g1 X q5- An exact summation of the perturbation-theory series in the leading or-
der in 1/N leads to the following results for temperatures 7'> 7, T¢:
0
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where  g’u’ x; is the susceptlblhty of a free local moment ( /yf
=j(j+ 1)go(1 — go)/3N*T and guiy® (R) is a seed susceptibility of the gas of
conduction electrons (“seed” in the sense that the interaction with f electrons is ig-
nored). The summation in (12) is carried out over all sites R, of the sublattice of f
electrons; § is a wave vector in this sublattice. It follows from (12) that the tempera-
ture of the magnetic transition, T,,, can be found under the condition T,, > T from
the equation

lex(} maxx?(q’)= 1. (13)

The value of §,, at which y?(3) has a maximum determines the structure of the
magnetically ordered phase. The value ¢,, = 0, for example, corresponds to a transi-
tion to a ferromagnetic state. The ¢ dependence of y? is determined by the band
structure of the skeleton, by the topology of the Fermi surface, and by the parameters
of the sublattice of localized moments (Refs. 10-12, for example). According to (12),
the magnetic phase transition in model (1) results from an intensification of features
in the magnetic susceptibility of the gas of conduction electrons as the result of an
exchange interaction with localized moments.

We turn now to the simple case in which the state density p, in the conduction
band is nearly constant, in which the f and ¢ sublattices coincide, and in which the
susceptibility y2 of the gas of c-electrons has its standard form, with a maximum at

g,, = 0. In this case a ferromagnetic transition can occur in the system. The tempera-
ture of this transition can be found easily from (13):

P 1 2 ,
T = [2(—;%—1] Jiprqo(l — qo). (14)

The behavior of the spontaneous moment M(T) and of #(T) is found from system of
equations (10), which takes the following form in the case M, =M, h, = h, € = €py
and b, =0:
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where n(€) = [exp((e —u)/T) + 117", and 4" is the number of unit cells.

To determine the temperature of the transition to a coherent Kondo state, we
seek a solution of Egs. (10) with M_h, =0, b, = b #0, and €,, = ¢,. The equations
for b and ¢, are in the standard form for the Cogblin—-Schrieffer model.”® For a half-
filled conduction band and the value ¢, = 1/2, i.e., if the f level is nearly half-filled, we
also have

Tx = pexp(—1/Jp, — 0.126). (16)

We turn now to the problem of the competition between the Kondo effect and ferro-
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magnetism. According to (14) and (16), by varying J and J, we can arrange arbitrary
relations between 7, and 7. We first consider the case T,, > Tx. At T< T,, a spon-
taneous field #(7") then arises. We know quite well that a coherent Kondo state is
destroyed if the field acting on a localized moment exceeds a critical field A, (7). It is
thus clear that at 2(T) > hx (T) a transition to a coherent Kondo state in the region
T<«<T, becomes impossible. In the case of a half filling we find A,(7)
=7.5T¢ In""*(T/T) and h(T)~89T, (1 — T/T,, )" It follows that if T,, > T,
but T,, and Ty are not far apart, then the field 2(7) increases more rapidly than
h, (T), indicating a suppression of the Kondo effect by the ferromagnetism

If Ty > T,,, there is first a transition to a coherent Kondo state with an effective
hybridization 5(T) = [ (Tu/2g,(1 — g,)In(Tx/T)]"/? for T near T. Analysis of the
stability of the Kondo state with respect to magnetic fluctuations shows that, in the
particular case which we are discussing here (in terms of the choice of the band €, and
a half filling), the appearance of a value b #0 suppresses the transition to the ferro-
magnetic state. Consequently, the total magnetic susceptibility behaves in the follow-
ing way at T > T,,. As the temperature decreases to 7= T, the susceptibility in-
creases in accordance with y* = C /(T — T,,). At T'= Ty, the susceptibility changes
slope and begins to decrease with decreasing temperature. It reaches a finite but large
value C/T,, where Ty~ Tk.

In conclusion we repeat that the results found for model (1) are sensitive to the
choice of the band structure of the skeleton and the choice of the sublattice of localized
moments. The corresponding band structures must thus be used to analyze experimen-
tal data with the help of model (1). In particular, it is very important to study the
behavior of the magnetic susceptibility of the gas of conduction electrons, y2(g). This
behavior is important for determining the structure of the magnetically ordered phase.

! Proceedings of International Conference on Magnetism (Paris, 1988), J. Phys. (Paris) 49, C8 (1988).
2Proceedings of Sixth International Conference on Valence Fluctuation, Physica B 171, 1991.

*B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett. 61, 125 (1988).

4S. Doniach, Phys. Rev. B 35, 1814 (1987).

5V. Yu. Irkhin and M. 1. Katsnelson, J. Phys. Cond. Mat. 2, 8715 (1990).

“B. Cogblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).

D. M. Newns and N. Read, Adv. Phys. 36, 799 (1987).

8A. Auerbach and K. Levin, Phys. Rev. Lett. 57, 877 (1986).

°V. 1. Belitsky and A. V. Goltsev, Physica B 172, 459 (1991).

198, V. Vonsovskil, Magnetism, Halsted, New York, 1975.

"R, M. White, Quantum Theory of Magnetism, McGraw-Hill, New York, 1970.

2N. I. Kulikov and V. V, Tugushev, Usp. Fiz. Nauk 144, 643 (1984) [Sov. Phys Usp. 27, 954 (1984)].

Translated by D. Parsons

534 JETP Lett., Vol. 55, No. 9, 10 May 1992 A.V.Gol'tsev 534

N




