Charge-transport statistics in quantum conductors
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The noise in a quantum resistor at 7 = 0is described statistically over a long time
interval t> 7, = #i/eV. The correlation functions of all orders are found. The
distribution function of the transmitted charge is also found. The noise is
determined by negative current pulses with a length shorter than 7,,. They carry a

charge which is a multiple of e* = 2ey/D , where D is the transparency. The
statistics of the pulses is binomial. This result corresponds to the probability
distribution which arises as the result of a steady-state Bernoulli random process.

The noise observed in microscopic resistors at low temperatures is in excess of the
equilibrium Nyquist noise.! This noise is made up of several components: the 1/f
noise, the random telegraph signal from the switching of defects,? and the current
fluctuations which stem from the discrete nature of the charge.®* The latter compo-
nent, also known as “quantum shot noise,” is our topic in the present letter. If only
one conduction channel is effective, the spectral density of the latter noise component

is®

2

Sy(w=0)= GZHD(L—D)eV, (1)

s

where D is the transparency (the square of the transmission amplitude), and V is the
voltage. Expression (1) can also be generalized to the case in which more than one
channel is operating.’ It is worthwhile to analyze the statistical properties of this noise
in more detail, in order to (for example) make a comparison with the statistics of
classical shot noise. OQur purpose in the present letter is to derive expressions like (1)
for the high-order correlation functions of the current. In the one-channel case we find
the correlation functions of all orders exactly. Using them, we find a complete descrip-
tion of the statistics of the charge fluctuations. The primary result of this letter is that

the statistics is binomial, with probabilities g, p = 1(1 + JD ) and with a noninteger
quantum of charge, namely, 2eyD .

The problem is formulated as follows.> A one-channel Landauer resistor® can be
thought of as a one-dimensional potential barrier on which electrons are incident from
both sides, coming from reservoirs on the left and right. The energy distributions in
these reservoirs are equilibrium Fermi distributions: n; (E) = 8(e¥V /2 — E), ny (E)
=6( —eV /2 — E) (we are assuming T = 0). The potential difference gives rise to a
current I = 2(e*/h) DV in the reservoirs. (For simplicity we ignore Coulomb screen-
ing,% and we furthermore assume that the transparency is independent of E. This
assumption is valid if eV’ € AE, where the right side is a characteristic energy scale of
the changes in D.) The reasons for the charge fluctuations are the Fermi statistics of
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the electrons and the operator nature of the current in the quantum-mechanical prob-
lem.

We are interested in the charge @, = o /I\(x,t ")dt’ which has passed over a time
t> TV = fi/eV. We write the quantities Q, and I(x,t) in terms of the operators
+.b,,b ", which annihilate and create left-hand and right-hand states.” * We calcu-
late expectatlon values of the type (I (x,t)).. T (x,t;)) by the standard procedure for
statistical averaging:” (a) We form links of operator pairs, a,a,; and b,, b ", with
which we associate the expectation values {a,"a,) =n, (E,)6(p — p’), and (a,a,
= [1—=n,(E,) ](5( p —p'), (and we do the corresponding thing for b, ) (b) We
determine the sign by making use of the circumstance that the operators antlcommute
(¢) We sum over all ways to arrange the links. We find the expectation values (Q ) by
evaluating the integral % ...55(7,.. 1,)dt,...dt,. As usual, the result found in this aver-
agmg can be formulated most simply in terms of irreducible correlation functions
« Q Y, which are given by graphs in which the links form a single closed loop. The
integration over time gives rise to a factor ¢ on each such loop. The momenta p on all
links in a loop become identical, and we are left with a single integration over (dp) on
a loop. In this case the dependence on the point-x at which the current [ is calculated
drops out of the picture. Furthermore, it is not difficult to see that only states with
(—1/2)eV<E, <(1/2)eV make a nonzero contribution to the expectation value.
We thus find another factor of 2(e¥V /27h) after the integration over p (the 2 arises
from the summation over spins). We thus find N = (2e/#) ¥Vt on each loop.

The factor N represents everything which depends on the integration over dt and
dp. Using this simple fact, we can formulate the averaging rules in a slightly different
manner, avoiding from the outset the coordinate dependence and the time dependence
of the expressions to be averaged. We consider the operator

N
J= eZDa‘-’ka,- - Db?bi + Aa;"b,- + Ab?_ai ) (2)
1=1

where a;, b, are fermion operators; D = A% A = AB; and 4 and B are the transmission
and reflection amplitudes of the barrier (42 + B?=1). For simplicity we assume
A*=A, B* = B; it is simple to verify that all the results remain the same if 4 and B
are instead complex. The operator Jis the current operator” 1(x,1) after the coordinate
dependence and the field dependence have been removed. In it, states from the band
|E,| <}eV, are singled out; only these states contribute to the expectation values of
interest here. It follows that we have (Q") = (J*). The averaging of J * should be
carried out in accordance with the rules {(a;"a;) =<(b;b;')=6;, (a,a7)
= (b ;" b;) =0. Strictly speaking, calculations with operator (2) are meaningful only
at integer values of IV, but at N> 1 the result can be continued analytically from integer
to noninteger values of N.

With these rules formulated, finding the expectation value of @ﬁ‘ of any order
reduces to the mechanical collection of terms of the form + NZe*D"A*~ "™ where L
is the number of closed loops. Here are the results for the first four irreducible correla-
tion functions:
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(Qc) =eDN, (Q)=e*D(1-D)N , (O%) =—2¢*D*(1 — DN,

(@#) =2 D*(1 - D)(3D ~ )N, N-%‘fw 3

Here we have used the relation D? + A% = D. The first correlation function is simply
the Landauer formula, and the second is a known result [see (1)]. The fact that the
correlation functions of third and fourth orders are nonzero means that the noise is not
Gaussian. We note that the correlation function of third order is negative, while that
of fourth order changes sign at D = 1/3.

We can now calculate the characteristic function y(4) = (exp( — 1’/1@[)). Once
we have found y(A), we can find all the irreducible correlation functions by using the
well-known expansion®

In the limit N> 1, we can find y(4) exactly. The idea underlying these calculations is
that the statistical averaging which appears in the definition of y(4) is interpreted as
finding the vacuum expectation value of the S-matrix of an auxiliary quantum-me-
chanical problem.

We consider a system of 2N fermions with Hamiltonian (2), in the state |0)
specified by a7 |0) =0, b,/0) =0, (i =1,...,N). We find the projection of a state of
the system onto |0) after a time A; ie, we calculate the matrix element
(O|T exp[ — ifg J (7)d7]10). As usual, we expand the chronological exponential func-
tion in a series. Using Wick’s theorem, we can write the expectation values as the
products of T-ordered binary expectation values. It is not difficult to see that the 7-
ordered expectation values in terms of the state [0) are exactly the same as the statisti-
cal expectation values introduced above. On the other hand, since Hamiltonian J is the
sum of N independent two-fermion Hamiltonians, the S-matrix is found as the product
of N commuting two-fermion S-matrices. Accordingly, the matrix element in which
we are interested is the N th power of a two-fermion matrix element. The latter can in
turn be found easily by making use of the circumstance that the Hamiltonian
J= p A Ji,\ conserves the numbers of particles: 72, = a;"a; + b ;" b,. We can thus re-
write each J; in the sector of interest here (n, = 1) in terms of Pauli matrices: J,
= eDo* + eAdY. We thus find y (1) = (tlexp[ — ile(D6* 4 A&G*)]|1)". Evaluating
the matrix element, we finally find

x(X) = (cos(AeV D) — iv'Dsin(XevV D))V . (4)
One can verify that a power series of In(y (1)) reproduces the correlation functions in
(3).

We now use the characteristic function to find the distribution of charge Q,:

P(Q)=(8(Q, —Q)) = J e (A)dA /2m. An unexpected property of expression
(4) for y(A) is a periodicity, with a period 27/eyD. This periodicity leads to a
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quantization of @,. Evaluating P, (Q) as the Fourier transform of y(1), we have a
discrete distribution with a quantum 2e\D:

PQ) = 3. Pn §(Q-(N~2m)eVD) ,

(N +1)

P, = m_ N-m
P T+ DIV —m+ 1)

(3

where ¢, p = 1(1 4+ D). Here we have used a Bernoulli binomial distribution, which
we have written in a form suitable for both integer and noninteger values of N. The
quantity N thus takes on a probabilistic meaning: “‘the number of attempts.”

To discuss this distribution, we naturally assume that (5) describes a classically
random process, rather than a quantum-mechanical problem. We would thus like to
interpret the exponential time dependence of characteristic function (4) as being a
result of the steady-state nature of the random process.” This assumption naturally
leads to the representation that the transition probabilities W, ., =dP,,. . /dt, _,,

are constant. Expressions (4) and (5) work at r>7,; the correlation time of the
process is thus <7,.

We can offer a verbal description of the picture which arises: The amount of
charge which has passed over a time ¢ takes on one of the values Q,, (%)
=eyD [(2e/h)Vt — 2m], (m = 0,1,...). At random times, there are jumps from m to
m' > m; there is a transfer of m’ — m quanta e* = 2ey/D in the direction opposite the
direction of the average current. The time scale between these current pulses is on the
order of 7, and is much longer than a single pulse. The most probable instantaneous
value of the current is 2¢>/h+/D V, not the expectation value (2¢2/h)DV given by the
Landauer formula (Fig. 1).

The reasons for the fluctuations are the correlations which stem from the Pauli
principle. These fluctuations are not a direct result of the quantization of electric
charge. The states which are participating in the charge transport are completely
delocalized and are in the form of plane waves. We should thus not be surprised to find

b
2¢2

I
]

FIG. 1. Time evolution of the current corresponding to distribution (5). The average current (2¢*/h)DVis
lower than the most probable instantancous value 2¢%/k D V. The negative pulses carry a charge which is a
multiple of e* = 2eyD.
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that the quantum of charge is not an integer. On the other hand, we note that the
nature of the quantized pulses of the “countercurrent” is still unclear in many ways
and requires further research.
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