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A microscopic theory is derived for SIN 'IN contacts whose length is greater than
the correlation length. Boundary conditions are found for the distribution
functions at the STV boundary. Expressions are found for the conductance peak at
a zero bias voltage in SIN 'IN contacts and for the dependence of this peak on the
magnetic field.

Contacts of various types have recently attracted increased interest. In particular,
measurements have been carried out on S-~Sm contacts, which behave like SIN con-
tacts (Sm, S, N, and [ are respectively a semiconductor, a superconductor, a normal
metal, and an insulating layer)."? The role of insultating layer I is played by the
Schottky barrier which arises at the boundary of the superconductor and the heavily
doped semiconductor. A peak was observed in the differential conductance of Nb—
n+Ing 53 Gag ., As contacts at a zero bias voltage at low temperatures (7<1 K) in
Ref. 1. That peak could be suppressed by a weak field (H < 100 mT). Kastalsky ez al.'
attributed this peak to a priximity effect, i.e., to the appearance of superconducting
correlations in the Sm region. For a quantitative interpretation, they used equations
derived by Geshkenbein and Sokol® for an SN contact on the basis of the nonequilib-
rium Ginzburg-Landau equations. They generalized those equations, taking the mag-
netic field into account.

The application of the microscopic theory to ordinary (i.e., not gapless) super-
conductors has been held up by the lack of boundary conditions for the Green’s
functions at the SIN boundary. The Josephson effect in the SINIS system was appar-
ently first studied by Aslamazov and Ovchinnikov.'” They joined the solutions at the
SIN boundary by a tunneling-Hamiltonian method. Joining conditions (valid for any
transmittance) for the Green’s functions at an SIN boundary were recently found
without the help of that method by Zaitev* (for the general case) and by Kupriyanov
and Lukichev® (for the dirty case). Using these conditons, Zaitsev® analyzed the cur-
rent-voltage characteristics of dirty SININ and SINIS contacts with a length shorter
than the correlation length £. He found by numerical calculations that the conduc-
tance has a peak at V= 0 in SIN 'IN contacts with a low transmittance. He also found
from an excess current I.,. > 0 to a deficient current 7 ;s < O with decreasing transmit-
tance of the barrier. A transition of this sort had been found previously by Blonder e?
al” on the basis of a simpler and clearer theory, but that theory did not predict a
conductance anomaly at a zero bias voltage, since the proximity effect was disregard-
ed.
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In the present letter we derive joining condition for the distribution functions at
an SIN boundary by working from the boundary conditions for Green’s functions.®
These conditions make it possible to analyze contacts with a length d > &. Using them,
we study dirty SIN'IN contacts with a length d which satisfies the condition
&y <d <., where £y is the superconducting correlation length in the N’ region (this
length is assumed to be large in comparison with the mean free path /), and
I, = (Dy7.)"? is the energy relaxation length. The latter condition allows us to ig-
nore the inelastic-collision integral in the N’ region. We derive analytic equations
describing the current-voltage characteristics of an SIN'IN contact. In particular, we
find the shape of the conductance peak at ¥ =0 and its dependence on the magnetic
field.

N'e
The equation for the isotropic part of the Green’s-function matrix G satisfies the
following equation® in the N’ region:

v v Y v
Dn3:{(G 8, G) +iclo,, Gl =0. (N

Here G is a supermatrix whose elements are the functions GR and G = GRJA” }‘a"
where f L6, + fll is the matrix of distribution functions. The function f;, in which
we are interested, determines the electric current and the potential.>® We impose on G
the boundary conditions found in Ref. 5 for an SIN barrier, taking account of the
difference between the Fermi momenta to the right and left of the barrier:

vV v v v
ol G 0z G |z=0 =[Gs, Go]-. (2)

The coefficient 7, characterizes the transmittance of the SIN boundary. The boundary
resistance R, is expressed in terms of 7y: R, = r,/ /20, where o, is the conductivity
in the N’ region. The x axis runs perpendicular to the interface whlch is at x = 0
Writing retarded Green’s function G® in the form G = &, cosh u® + i&, sinh u®
we can solve the equation for GR exactly in the N’ region. The solutlon with the
boundary condition GR () = &, 18

tanh(u®(z)/4) = tanh (vl /4) exp(~kT z). 3)

A corresponding equation can be derived for Su? =u” — i. The constants uZ and 5u{
are found from conditions (2) at x = 0. They satisfy the equations

(rolk®)sinh(uf /2) = fRcoshull — g%sinhull,

4)
rolk#)sinh(§ull/2) = — fAcoshbu? + gAsinhéuf
0 0 0"

Here k*® = 4 2ie/D,]"? and g® and f® are the components of 6§ in the .S
region, which are assumed to be unperturbed:" g = g/& R FRUD — A /g R
EXD =[(e£i0)®— A"

To find the joining conditions for f,, we need to calculate element (12) of Eq.
(1), multiply it by &, and calculate the trace. We then find that the flux

18z f)[1 — cosh(u® + v)] = L, (¢) (5)
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is independent of x, and the function f, itself varies only slightly over distances on the
order of £x. For f, we have'®

fo(@) = £2(0) + I(e)(=/21). (6)
From Eqgs. (2) we find boundary condition on f, at the SIN boundary:
rol, () = Ao[£.(0) — f7]. (7

Here 4,= (g% — g (G§ - GY) — R+ S(FR+ F{), and f5 is the distribution
function in the S region, which is zero at equilibrium (if the phase is chosen to be
zero). The functions G § = cosh u® and F® = sinh u® are found from (4). We can
thus work from Egs. (4), (6), and (7) [the joining condition at x = d is of the same
form as (7), with A, = 4] to calculate the current in the system:

= (ox/4D) / del, (e). (8)

Let us consider an SIN'IN contact. From Egs. (6) and (7) and from the bound-
ary condition at x = d, with 4, =4, we find
4F_
I(e) = : ,
(&) = o T rot@/A0) ¥ 2471

(9

where F_ = [tanh(e + V) — tanh(e — V)[B]/2 is the equilibrium distribution func-
tion in the N electrode when there is a voltage V. Using (8) and (9), we can find the
current-voltage characteristic of the contact. Equations (4), which determine 4,(€),
can be solved analytically in the cases of a high transmittance (r,<&y//) and a low
transmittance (r,> &y /1) of the SIN ' barrier.'® At absolute zero, the reduced differen-
tial conductivity &,; =RyNdj/AV is o,(v) = (1 +a)/[la+4/4,(v)], where
a= d+r ) /ryl, and Ry = {d + (r; + 1)l /2]oy is the resistance of the contact
in its normal state. In the case of a low transmittance we find the following expression
for A,(€):

Aa(0)/4 = Gl = )4 ol /(7)o - ), 10

(v? =A%)
where 7o =7l /26N (A)> 1, Ex (A) = (Dy/2A)Y2, and v = eV /A. It is not difficult to
see that under the conditions &, (A)/d <\Jv<1 we have &, (v) = [ 1 + v/v,]!, where
vy = [ (1 + a)/%,]? is a characteristic voltage for the conductance anomaly at a zero
bias voltage. It can also be shown that in contacts with a high transmittance an excess
current I,,. arises (I R, =4A/3a at a> 1), while in contacts with a low transmit-
tance a deficient current I, arises [/ Ry = — (8/21)Fy/a with a>¥7,>1]. They
decrease with increasing length of the contact.'

The imposition of a magnetic field A (parallel to the z axis) accounts for the
presence of a phase in the S region: y(y) = 21r/lyHA/ ®,,, where A is the London depth.
The Green’s functions in the presence of a phase, G ¥, can be expressed in terms of
the functions in the absence of a phase by means of a transformation
GR = S(y)GRS‘*(y), where S(y) = cos[y(¥)/2] + i&, sin[y(y)/2]. The equation
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for u® then changes, as does the solution of this equation [see Eq. (3)]."' Because of
this change, the left side of Egs. (4) does not vanish as €0, since k® (¢€) is replaced
by [(K®)*+ (d,x)?]1"/% Omitting the details of the calculations, we write the result

for &, (v) for £y (A)/d<Jv<] and T =0:
&d(v) =[1 + [(h4+v2)/(v0(hz +(h4+v2)1/2))]1/2]_1. (11)

Here h =27A&y (A)H /. For v<v, we find the dependence of &,(0) on H from
(11):6,(0) =1/[1+ |H|/H,], where H, = ® 20,/ [ 27AEy (A) ] is a characteristic
magnetic field at which the anomaly is suppressed. This is the dependence which was
observed in Ref. 1. At nonzero temperatures, the &, (0) peak is suppressed. The char-
acteristic temperature of this suppression is Ty~ Av,,.
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UBecause of the proximity effect, the functions g also change in the S region. This change is small and
can be ignored if the barrier transmittance is small or if N’ is a narrow constriction.
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