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The Peierls instability in a 1D Fermi system with a weak interaction and a half-
filled band is analyzed. The effects of the interaction on the Peierls transition in the
model of spinless particles are quite different from the effects in the model of
particles with a spin.

According to the well-known Peierls theorem,' a one-dimensional (1D) metal is
unstable with respect to lattice distortions. This theorem has several important conse-
quences for the theory of 1D systems.” In particular, the concept of solitons as a
particular type of excited state of polyacetylene is based on this theorem.?

It should be noted, however, that the Peierls theorem applies to a system of
noninteracting electrons. Although several attempts have been made to take into ac-
count the effect of an interaction on the Peierls instability by a variety of approximate
methods* or through numerical calculations for finite chains,>® this question has not
yet been finally resolved.

In this letter we take up the problem of the Peierls instability for two models of
weakly interacting Fermi particles: a spinless lattice Fermi gas with a Hamiltonian
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We consider the case of a half-filled band, in which there is a doubling of the
period of the chain according to the Peierls theorem. The quantity & in (1) is the strain
parameter. We might also note that Hamiltonian (1) can be expressed in terms of spin
operators and can thus describe a spin-Peierls system with an anisotropic interaction.

The problem of analyzing the instability of a 1D system with respect to a defor-
mation of the chain reduces to one of finding the & dependence of the ground-state
energy E,. Since the elastic energy of the lattice is E,; = 6 */2 (« is the dimensionless
elastic modulus), a deformation is preferred from the energy standpoint if the quantity

€@) +E (€ (8)=Eo (8)—Eo (0))

has a minimum at § #0. For g = 0 we have €(5 )~ %nd, and there is clearly a mini-
mum at <1. This assertion is the Peierls theorem.

Analysis of the perturbation-theory series in g for the ground-state energy for (1)
and (2) shows that the leading contribution to €(§)/8% in nth order is
~g" In"+'5(5«1). We will briefly describe a method for summing the most divergent
terms of the perturbation-theory series. It is usually assumed that the approximation
corresponding to the retention of only contributions of this type is valid if g<1 (a weak
interaction).

It turns out that contributions on the order of §°g"In" " !5 to €(§) are made by
diagrams of the “parquet” type, which have a pair of lines corresponding to “anoma-
lous” pairing, {(a, a, , ,):

<aga,, .>=i8sink/2e(k); e(k)=(cos®k+8sin®k)''2 .

The sum of such diagrams is expressed in terms of the vertex part, Y(k,0,, k,05; k303,
k,o,) [k = (k,w), o is the spin index]:
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Here G (k) is the Green’s function corresponding to the anomalous pairing.

The vertex part of (3) should be found in the parquet approximation. Finding the
sum of the most divergent energy diagrams thus reduces to calculating the sum of the
parquet diagrams of the vertex part. The general method for summing such diagrams
is well known.”® This approximation was used in Refs. 7 and 9 to study possible states
of 1D systems. The set of all diagrams of the vertex part can be broken up into four
classes’: the y, diagrams, which are reducible from k,,k, to k,,k, (i.e., diagrams which
can be broken up into two parts containing k,,k, and ks,k, by cutting the diagram
along two interior lines); y,, which are reducible from kk; to k,k,; 7, diagrams,
which are reducible from k,k, to k,,k;; and irreducible diagrams (as such diagram we
choose the vertex part of first order). The leading logarithmic contribution to (3) comes
from the region k,,k, = + 7/2 of the integration over the momenta. Correspondingly,
the behavior of y(k,0,,k,04;k,05,k,04) is important only at the momenta = + 7/2. It

160 JETP Lett., Vol. 39, No. 3, 10 February 1984 V. Ya. Krivnov and A. A. Ovchinnikov 160



can be shown by working from (3) that €(5 ) is expressed as follows in terms of y,, 7,,
and 5

@ @
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where the plus and minus signs correspond to the momenta + 7/2, ¢ = — Iné, and
we have transformed to the logarithmic variables 7, = — In(dk;). It can be seen from
(4) that ;" ~~* and y;" * ~ ~ are functions of a single variable (this is a familiar
situation in the theory of parquet equations, in which all the momenta on which y
depends are comparable in magnitude), and 7," ~ ~ T and y," T ~ ~ are functions of
three variables.

The problem of finding the function ¥ in (4) reduces to one of solving a system of
nonlinear integral equations. We omit the intermediate calculations (which will be
published separately) and proceed immediately to the final expressions for €(8 ), which
incorporate the term of zeroth order in g. For model (1) we find

€ (8)=—(5%/4g) (exp (28 ®/m) — 1) (5)
For the Hubbard model we find
€(§)=—(62 Q/ﬂ)«ll—(gcb/w)l'””. (6)

It follows from (5) that in the case 6«1 for a spinless Fermi gas we would have
€)= (—4g)~ 'y’ %", and a deformation would be preferred from the energy stand-
point if g>0; in the case of an attraction, the system would be stable with respect to
the Peierls transition. In the Hubbard model, €(§) diverges at §, = exp( — 7/|g]). On
the other hand, the ground-state energy for (2) must be finite at § = &,. The reason for
the singularity in (6) is the approximate nature of the calculations. This singularity
shows that the function (6 )/8 ? has a minimum at § = §,(g). To determine the nature
of the singularity of €(8) at § = 8,(g) requires consideration of the nonparquet dia-
grams. At any rate, the system is stable with respect to a transition to the Peierls state
if |€(80)/8 5] is less than k/2.
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