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A semiclassical description of the energy spectrum is not valid for tunneling-
coupled quantum wells whose relaxation times 7, and 7, are different, because the
2 X2 Green’s function cannot be diagonalized in the case 7, # 7,. Quantum-
mechanical expressions are accordingly derived for the magnetoresistance and the
Hall effect even in weak magnetic fields (w7, < 1, where w, is the cyclotron
frequency).

Tunneling-coupled electron states in double quantum wells have been studied by
optical methods and also on the basis of the “resistance resonance” which arises when
the scattering in the left well (/) and that in the right one (r) are asymmetric.'™ This
resonance arises at A ~0, where A is the splitting of the levels of the double quantum
wells at 7= 0, where 7 is the tunneling matrix element. This effect occurs because the
electron densities in the / and » wells are independent of A (a transport in real space)
and also because the scattering probability is changed by a tunneling-induced mixing
of states. If the tunneling frequencies T /# are smaller than the difference between the
relaxation frequencies of the / and r wells, v= (7, ' — 7, ') (we are assuming 7, <7, ),
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however, scattering processes suppress the tunneling-induced superposition of the
states of the wells, and a semiclassical description of the energy spectrum is incorrect.
The peak representing the resistance resonance changes in shape. In addition, galvano-
magnetic effects in weak magnetic fields (w.7;, < 1) are described by the quantum-
mechanical expressions derived below.

In describing the electron states in the double-quantum-well structure, we use the
basis of orbitals of the / and » quantum wells. The overlap of these orbitals determines
the tunneling matrix element 7, which decays exponentially with the barrier thick-
ness.” Considering a double-well structure in a perpendicular magnetic field, and con-
sidering scattering by statistically independent random potentials of the / and » wells,
U, (x) and U, (x), we find the following 2 X 2-matrix'Hamiltonian in this representa-
tion:
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Here # is the kinematic momentum, &, and &, are the Pauli matrices, and
P, = (14 6,)/2 are projection operators which project onto the states of the / and r
wells, with equal effective masses m. A diagram expansion of the one-particle Green’s
function for this model contains only scattering contributions which are proportional
to P, . In the Born approximation, in the region of classical magnetic fields, #w, <€
(€is the average electron energy”), the retarded Green’s function in the translational-
ly invariant representation is determined by the 2 X2 matrix
. -1
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in which €, = p°/2m, p is the 2D momentum, and the relaxation times 7, and 7, are
independent of p and the energy E for §-correlated random potentials. We have omit-
ted from (2) a small renormalization of €, and A, and we have also ignored some
higher-order contributions (terms containing &, , ). Incorporating those contributions
complicates the analysis of the diagram expansion for the conductivity without chang-
ing the results.

The matrix with 7, #7,, obtained in the denominator of (2), does not commute
with its Hermitian conjugate matrix and the Green’s function cannot be diagonalized
by any unitary transformation.® The usual picture of the energy spectrum of slowly
decaying quasiparticles therefore cannot be introduced in the double-quantum-well
structure with asymmetric scattering at T~ A,fiv, and a quantum analysis of the kinet-
ic phenomena is necessary even at large Fermi electron energies, € > T,A.

We calculate the conductivity tensor in the ladder approximation (ignoring local-
ization corrections). We take into account the matrix structure of (2) and of the
scattering potentials. For the model of scattering by §-correlated potentials, the trans-
port relaxation times are the same as the outgoing times 7, ,, and the integral equations
for the Green’s function describing the linear response convert into algebraic equa-
tions. Such equations can be summed over p. As a result, we find a closed equation for
the 2 X 2 matrix X ,4. The trace of this matrix determines the conductivity tensor o,4:
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Here 7 is the total electron density in the double-well structure, 7' = (7, ' + 7, 1) /2
is the average relaxation frequency, and o determines the conductivity in the case of
a pronounced tunneling-induced mixing of / and r states. In this case the probabilities
for scattering by inhomogeneities of the / and r wells add together. It is convenient to
work with the 2 X2 flux matrix W = Ze (where e is the unit vector along the electric
field in the plane of the double-well structure) in place of ﬁaﬁ. For this flux matrix we
find a quantum generalization of the momentum balance equation:
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where @, = (0,0,0.), [...] _ and [...], are the commutator and anticommutator of
the 2X2 matrices. The usual semiclassical approximation®* is found in the case
VA/2) T+ T?> #iv/2, after a diagonalization of (A/2)0, + T&,. In this case, Eq. (4)
becomes the momentum balance equation for the symmetric and asymmetric states of
a double-quantum-well structure, and the nondiagonal part of the flux matrix W can
be ignored.

We can write a general solution of (4) for values of #iv comparable to the distance
between levels by transforming to circular coordinates. For the components of the

conductivity tensor o, = 0,, = 0,, and 0, =0,, = — g, we find
t)r [ coswi v, AL
( oL ) / dte ( sin w1 ) trexp [t(za, + 50 +1T6,)
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We can then immediately calculate the trace and carry out the integration in (5). Asa
result, we find
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The dimensionless cyclotron frequency £, the dimensionless tunneling frequency 1,
the level splitting 6, and the extent of asymmetry in the scattering, 4 (the value g =0
corresponds to identical scattering in the wells; the value || = 1 corresponds to scat-
tering in only one of the wells), are introduced in (6) by means of

Tr— T
Ttn

Q.=w,r, Qp=2Tr/h, &t=Ar/h, p= €))
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FIG. 1. Magnetic-field dependence modulating (a) the classical magnetoresistance and (b) the classical
Hall constant (the functions f; and fj; ). Solid lines—resonance, § = 0; dashed lines—nonresonant case,
=1

From (6) we find the following results for the dimensionless resistance po and

the dimensionless Hall constant R /R, ( = — 1/|elnc):
I p?
por =1~ mfn(ﬂcw, Qr), R/Ro=1+ ﬁ‘ﬁg,ff{(ﬂclé; Qr). (8)
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The functions fx and fy, shown in Fig. 1, are equal to one in the classical limit. For
the double-quantum-well structures studied in Ref. 2, with Q. ~ 1.6, these modulating
factors are quite different from one, but the magnetic-field dependence in (8) would be
weak because of the value 4 ~0.13. For the double-quantum-well structures which
were studied in Ref. 4, with a greater asymmetry in the scattering, the plots of (8) are
not monotonic. The relation R /R,>0 holds. The sign of the magnetoresistance
(p— thc=o) becomes negative with increasing 8, at Q4 > 1.37, even if Q_ <i.

The qualitative distinction between (8) and the classical dependence for 2, <1
demonstrates the onset of macroscopic quantum-mechanical effects in a double-quan-
tum-well structure with asymmetric scattering (the frequency dispersion of the con-
ducitivity, the nature of the relaxation of the populations in the wells, and other
properties also change in such a structure).

YUnder the assumption that € is on the order of the spreading of the Fermi distribution, we are ignoring here
not only the quantum Hall effect but also magnetooscillation phenomena.
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