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The problem of quantum scattering of an electron by a short-range impurity in a
two-dimensional electron gas in the presence of a perpendicular magnetic field and
alongitudinal electric field is solved. It is shown that in addition to the bound state,
which exists in the case of zero electric field, there are in an electric field N novel,
nondegenerate, quasi-bound states with energies close to the N th Landau level,
irrespective of whether the impurity is attractive or repulsive.

In analytical and numerical studies, which address magnetokinetic phenomena in
bulk semiconductors,’ the quantum Hall effect,” the conductance of a microconstric-
tion,* and variable-range hopping magnetoresistance,’ it was important to investigate
the electron scattering by a single impurity in a magnetic field. In these studies, the
scatterer is of short-range type. In Ref. 2, the scattering by an impurity of the drifting
electron is considered for the case of crossed electric and magnetic fields, but the
bound states near the lowest Landau level (LL) was mainly considered. In the present
article we also consider more carefully the possible bound states around the higher
Landau levels. In Ref. 3, the intersubband tunneling of drifting electrons via an impu-
rity was studied, and the scattering potential was assumed to be a §-function. The use
of the 2D §-function as a scattering potential was found to be incorrect in Refs. 4-6. In
Refs. 7-9, we used a method which allows to circumvent this difficulty. Additionally,
our method turned out to be very efficient for the investigation of the structure of
bound states. Hence, further concise calculations are in the context of this method.

Let us assume that the magnetic field A is uniform and directed perpendicularly
to the plane of the two-dimensional electron gas (2DEG), and that the uniform elec-
tric field E lies in the plane of the 2DEG and is directed along the p axis. It is known
that the electron under such circumstances drifts along the x axis with the velocity
v = cE /H. In the Landau gauge, the wavefunctions of that motion, which are normal-
ized to unity fd?rW¥,, (n)V%,. (r) =8(k — k')6,,, have the form

1
\P‘llk(r)_ (27()3/4\/_T;i

Here D, are the functions of the parabolic cylinder with integer indices, and
n=0,1,2,.. (Ref. 10). We introduced the dimensionless coordinate r = (£,s) with

nn'?

x e*¥¢ X Dn(s — 2k + 2a). (D
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E=V2/ay x, s=V2/ayy; the momentum k=ay/v2'p. /# the drift velocity
2a =V2/aywy, v, where the magnetic length is a;; = \/fi/me,, and the cyclotron
frequency wy = [e(H /mc. The energy of the drifting electron, in units of fiwy, €,
=n+1+ 2ak — @, consists of the klnetlc energy of the cyclotron motion n + 1, the
kinetic energy of the drifting motion @?, and the potential energy 2a(k — ).

At a fixed energy &, there is an infinite set of drifting states which are separated in
space if @ €1/y/n. Let us also assume that such a drift state with a wave function ¥ Ny
(r) and ky = (¢ — N~ 1 4 a*)/2a is scattered by a short-range impurity (which is
an s-scatterer) situated in r,. The scattered field for such an impurity is®
Ge(r, 10)

. (2)
De(ro)

P'(r) = ~2m¥ gy (ro) X
Here G, (r,7,) is the Green’s function of the outgoing waves of the Schrodinger equa-
tion without the scattering potential. The Green’s function G, (r,7,) can be expanded
in eigenfunctions (1) (see Ref. 11). Additionally, in a further expansion of the small
parameter o the Nth LL is the main contribution:

+o0

1 e Dals = 2%) Dy (=2k)
Ge(",ro)lrozo m‘z)(/dk e X Zk—EN/a~i-0 . (3)

-

Here for convenience we set 7, = 0 and omit the gauge factor e ** (we can eliminate it
by slightly varying the gauge), and £5 =& — N — } — a*. The expression (3) is valid
everywhere except the region near the impurity, where the Green’s function diverges:

Gelrsrollrs = 5 [0 (2 ) + Kol @

The quantity K, (r,) plays in important role in the analysis of the structure of
bound states because it appears in the denominator of the scattering amplitude in (2).

D, (ro) = A + K. (ro), A=xn(\/“;a), (5)

where a is the 2D scattering length of the impurity scattering potential. The exact
formula for K. (r,) takes the form"

1
K (r0)lro=0 = 5 Z[ =7 X Dalen/a)Dop_1(—ieq /a) + + K¢ a0 = Ko,
n=0
(6)
where
Kc,a=o=—%¢(1/2~e)—0+ln2. (7

Here ¥(1/2 — ) is the digamma function,!® and C = 0.577... is Euler’s constant.
Equation (7) can be obtained!%!? from the standard Green’s function of an electron in
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FIG. 1. Plotsof Re K, (—), Im K, (- - -),and K., @ =0 (- - -) for N=1and N = 2. a is equal t0 0.07. The
separation of oscillations belonging to the neighboring Landau levels is clearly seen,

a magnetic field."* The plots of the functions K, and K, ,_, are given in Fig. 1. The
presence of an electric field leads to a nonvanishing imaginary part of the Green’s
function, and to oscillations of both the real part and the imaginary part of K. These
oscillations, which are localized near each LL, do not overlap with those of the neigh-
boring levels if @ <1/yYN. The amplitude of the oscillations of K, increases with de-
creasing electric field as 1/a. In this case it is convenient to rewrite (6) in the form

1 .
K. = g=ig X P(en/a)Don-y(~ien/a) + P, (8)

where P is a quantity on the order of unity which weakly depends on N and on the
energy in the vicinity of the N th LL. If the condition a £1/N is satisfied, the imagi-
nary part of P is exponentially small. We can thus assume P to be a real constant.

Bound states are defined as the scattering amplitude poles £ — /I', which are
located near the real energy axis. These poles are the solutions of the equation

- 1 ) -
D5=A+m XDN(EN/(I)D_N_1(—-2€N/C¢)=0, A=P+A. (9)
Since I' is assumed to be small, we can write this equation in the form
ImK,
P=f— " . 10
[d/deReKe] =% ( )

From Fig. 1 and the general form of Eq. (9) immediately follows the first important
result: bound states exist only if the condition
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e < 1 (11)

is satisfied. In the absence of an electric field (a = 0), the bound states always exist for
each impurity.

o

If the condition (11) is satisfied, there is at least one bound state, which is fuily
equivalent to that at a = 0. Using the asymptotic form!? of the functions D, and
D _ y_, inthe limit |65 /a) - oo, we find from Ref. 10 the bound state energy relative
to the Nth LL

2 (12)

EN = =
A

and their width

a 2
~ e S (13)
P (aA)ZN“""""[ (aA)Z]

As expected, the width of this bound state rapidly vanishes for ¢—~0 and the states
become nondecaying. This bound state can occur below a LL (if A <0) and also above
it (if A>0).

The presence of the electric field gives a set of new nondegenerate states near each
LL with N> 0. Their number for the N th LL is equal to N, in correspondence with the
number of zeros in the imaginary part of X, :

, _ 7 [Dn(en/o))
ImK, = \/;-X —-——ﬁr&———. (14)

The twofold degenerate zeros of Im K, lie very close to the simple zeros of the real
part of K, :

ReK, = i‘l‘a X DN(CN/Q) x [iI“ND..N_l(-—iEN/Oz)
_MII{ZXDN(E‘V/Q)] +P. (15)

This circumstance gives rise to the existence of a set of narrow bound states. Using
(14), (15), and the Wronskian relation W [Dy(z),D_ y_,( —iz)] =i"*", we ob-
tain the energies of the bound states up to the second order in «

en=aoly — 2a? -k, m=1{,2,.,N, (16)
Their widths are

I ~ o?A2. (17)
Here o’y are the zeros of the Nth Hermite polynomial.

From (17) and (9) follows that the existence of nondecaying bound states
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(I'y = 0) is possible for a moderate strength of the impurity, |A| = |P|~ 1. The wave
function of these bound states is proportional to the scattered field (2), and hence to
the Green’s function (3). As expected, the wave function of these bound states is
localized. Indeed, if A =0, then £7/a = 0% and the zero in the denominator of the
integrand in (3) cancels the zero of Dy ( — 2k). In this case, the right-hand side of
(3), a Fourier integral of a smooth function, becomes exponentially small in the limit

51— .

It is obvious that these bound states exist not only in a uniform electric field but
they are also characteristic of any smooth potential in which the drifting states are
present (for example, in a parabolic confinement potential®).
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YThe principal methods of obtaining (6) and a similar result are given in Ref. 9.

'S. P. Andreyev and S. V. Tkachenko, Zh. Eksp. Teor. Fiz. 83, 1816 (1982), and the references cited there.
R. E. Prange, Phys. Rev. B 23, 4802 (1981).

3V. L. Pokrovsky, L. P. Prjadko, and A. L. Talapov, Zh. Eksp. Teor. Fiz. 95, 668 (1989) [Sov. Phys. JETP
68, 376 (1989)].

“H. Tamura and T. Ando, Phys. Rev. B 44, 1792 (1991).

M. Ya. Azbel’, Phys. Rev. B 43, 2435 (1991).

). F. Perez and F. A. B. Coutinho, Amer. J. Phys. 59, 52 (1991).

’C. Kunze and R. Lenk, paper to appear in Sol. State Commun.

%Y. B. Levinson, M. 1. Lubin, and E. V. Sukhorukov, Phys. Rev. B 45, 11936 (1992); Pis’ma Zh. Eksp.
Teor. Fiz. 54, 405 (1991) [JETP Lett. 54, 401 (1991) ]; Fiz. Nizk. Temp. 18, to be published (1992) [Sov.
J. Low Temp. Fiz. 18, to be published (1992)].

°Y. B. Levinson, M. 1. Lubin, E. V. Sukhorukov, and C. Kunze, unpublished.

“Handbook of Mathematical Functions, Eds. M. Abramowitz and A. Stegun, NBS, 1964.

"P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.

'2Higher Transcendental Functions, Eds. H. Bateman and A. Erdelyi, McGraw-Hill, 1953, Vol. 2.

3V. V. Dodonov, 1. A. Malkin, and V. I. Man’ko, Phys. Lett. A 51, 133 (1975), see also Refs. 5 and 6.

Translated by the authors

60 JETP Lett., Vol. 56, No. 1, 10 July 1992 Kunze et al, 60






