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A general solution is derived for the evolution of a large-scale nonmonotonic
perturbation in dispersive Korteweg—de Vries hydrodynamics.

1. The problem of a shock wave in dispersive hydrodynamics was first formulated
by Gurevich and Pitaevskii. They used Whitham’s method? to find a self-similar
solution of the problem of the decay of an initial discontinuity in Korteweg—de Vries
(KdV) hydrodynamics. The construction of solutions of a more general type became
possible as the result of a generalization of the classical hodograph method to the
multidimensional case [Ref. 3 (see also Ref. 4); “multidimensional” here refers to the
space of dependent variables]. Solutions of the Gurevich-Pitaevskii problem were
found in Refs. 5-7 for the KdV equation with initial conditions corresponding to (a)
a monotonic breaking profile and (b) a localized perturbation. In the latter case, a
wave moving through the unperturbed medium was analyzed. The solutions for both
the monotonic and localized cases were characterized by two arbitrary functions spec-
ifying the initial profile.

In the present letter we construct a solution of the Gurevich-Pitaevskii problem
for the KdV equation with a slight dispersion,

du+udu+ed u=0, e<l, (n

XXX

with initial conditions of a general type (Fig. 1):

ry (x), x>0,
u(0,x) =up(x)= 1 rp (x), x*¥<x<0, 2)

p(x), x<xt,

where 7§ (0)=r5 (0)=0; (r§)’, (r5)'<0; (15D 30; r(—o0)>rd (+ o0); 75 (x*)
=rl(x*)=h; uy(0) > — . The function u(0,x) is generally nonanalytic at the
(unique) breaking point (0,0) and also at the point of the maximum (x*,4). In
addition, ug(x) varies slowly; i.e., we have uy/(u}) R 1 everywhere except in an e
neighborhood of the breaking point.

The breaking of profile (2) in dispersive hydrodynamics (1) is known! to lead to
the formation of a dissipationless shock wave: a quasisteady oscillating region which
lies between the leading edge x™ (¢) and the trailing edge x~ (¢). These boundaries are
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unknown at the outset. In the case of localized initial conditions, the dissipationless
shock wave converts asymptotically (¢— oo ) into a soliton wave: a chain of noninter-
acting solitons.”

The dynamics of the dissipationless shock wave is described by Whitham’s mod-
ulation system, found by averaging the initial equation over the period of the steady-
state traveling wave. In the KdV case, the modulation system is of Riemannian form:

A7+ Vi(rdwr=0, i=1273, 3)
where the characteristic velocities can be specified in a potential representation,*

Vir)=U—[33Mn(A/e)] L (4)
Here

1 3 | ~172
=3 > r;and A=2X6"2% f [H (r— r,] dr

i=1

are the phase velocity and length of the wave, and r;>7,>r;. The solution of Egs. (3)
is joined at the boundaries of the dissipationless shock wave with the smooth solution
r(x,t) of the Hopf equation

Ar+rd,r=0, (5)

with the initial conditions #(0,x) =u(0,x), since the dispersive term in KdV equation
(1) is unimportant.

The boundary conditions on system (3), (4) (the Gurevich-Pitaevskii condi-
tions) are!

nx",0=r(x",0, rx",0)=r(x",t),

r(xtD=r(x"t), nT0=r(x0. (6)

2, A solution of system (3) can be found in the form

x=Vr)t=Wyr), r=(r,rn), (7)
where

Wi=f—0,f/d1n(A/€), (8)
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and the function f(#) (a scalar potential) satisfies the Eisenhart system® (see Refs. 5
and 6 for a detailed derivation):

1

32~jf=5(r—l__‘r7)(aif—3jf)- (9)

System (9) was first derived for the KdV case by a direct calculation in Ref. 9.

It is clear from (7) that if the initial profile, (2), is nonmonotonic, then the
generalized hodograph transformation (7) is of a “two-sheet” nature. The solution of
the problem, (3), (6), is thus given by two systems (7)-(9) with two different
functions f;;; (which are defined in the region r;<r,<r;<h). The joining of these
functions occurs along the characteristic plane r,=A. For these functions we have the
boundary conditions®”’

1 gt
fl("1,0,0)=2—(—_‘r1—)17—2 fo YW (—»)dy,

(10)

1 B g

f1(0,017‘3)=§T/7 f y Wt (»)dy,

where fi(r;,7,0) and £(0,73,73) are bounded,;
1 7

57 fo y VWi (ndy, >0,

fII(O’O’rS)z ’ 1 —r (ll)
2(_’.3)1/2 J-O y—l/zWI_I(_y)dy’ r3<0,

Silrpruh) = fu(ry,ryh). (12)

Here the functions x = WI+ (r), x=Wr1 (r), and x= W (r), are the inverses of
r=rg (x), r=ry (x), and r=r(l,l(x), respectively.

3. The solution fi(7) on the first sheet is the same as that found in Ref. 6 for the
problem of the breaking of a nonanalytic monotonic profile:

1 o Wily)
f1(7)=ﬂ_(r3_r2)1/2 fr (y__rl)l/zK(Z)dy

2

1 n Wiy)

-1
Trtn=-m7 ), (2 K )y (13)
Here
WI+(y)9 y<0 (rZ_rl)(r?,_y) 172
W)= Wi (), y>0 z= m} (14)

and K(z) is the complete elliptic integral of the first kind—the Riemann function of
the Euler—Poisson equation.'®

The solution on the second sheet, which satisfies conditions (11) and (12), is

325 JETP Lett., Vol. 56, No. 6, 25 Sept. 1992 Krylov et al. 325



h - D(y)
w(r—r)7? J,, (r—r))"

Su(®)=fi(r)+ 5 K(z,)dy, (15)

where

r,—r y—"slm
r3—ry y—n
The continuity of solution (7), (8), (14), (15) in the region where the sheets join is

ensured by the continuity of the normal derivative d;f(ry,75,h). If #,=0, solution
(15), (16) is the same as the solution of the problem of a quasisimple wave. 7

D(y)=Wy(y)—Wu(y), D(h)=0, z=

4, Let us examine the evolution of a localized perturbation 7§ (+ o) — 7,
7 — o0 ) = 7, with 7,<0 const. We know’ that in the limit — o the solution is a
soliton wave in which the relation »,=r; holds, and the solitons are moving against a
homogeneous background r.

As r,—r3, solution (7), (8), (15) becomes

2"3 +7g

X~ 3 t+x0(r3), (16)
nh—nr
t=T(r)In(1—m), m= . (17)
ry—ry
Here
J' (2= 3\ g
%o(rs) = 2m(ry—ro) 72 —"o) - "3)1/2 y—ry
1 o Wi(y)
+2(r3—r0)1/2 fro ()72 dy, (18)
ko D'(p)
T ()= 47 (r—r) 72 . O r)l/Zdy (19)

We see that we have T'(r;) <0, as we must have for t— + .

Equations (17) and (19) can be used to calculate the density of solitons in the
soliton wave:

_37_7__#(7‘3—"1)1/2 n-ry 2m(r3—ry) (20)
AT 67 K(m) — e6In(1—m) "

Comparing with (17), we find the following result for the soliton wave:

1 2 12
sz; —81_/2'(7'3—"0) T(r3) . (21)

This result agrees with the result found by Karpman,11 which was derived by the
method of the inverse scattering problem in the semiclassical limit. Karpman’s for-
mula cannot be used to unambiguously reconstruct the initial perturbation from the
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parameters of the soliton wave, since the function T'(r;) in (19) contains only the
width of the initial profile, D(y). A single-valued relationship between the initial data
and the soliton wave can be established with the help of (16)-(19).

We wish to thank A. V. Gurevich for his time and interest.
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