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The Hall response oy, {w} of a two-dimensional electron impurity system in a
quantizing magnetic field at a frequency w0 is analyzed. The response o, () is
predicted to have a dip in its functional dependence on the concentration. The dip
results from the filling of localized states and may actually consist of two dips.
‘When the Landau level is completely filled, o, () is approximately the same as the
response of the pure system.

Reaching a better understanding of the systems in which a quantization of the
Hall resistance has been discovered' requires studying not only the static but also the
dynamic responses of such systems. In this letter we analyze the Hall response of a
two-dimensional (2D ) electron impurity system in a quantizing magnetic field at the
frequency w#0. To derive exact analytic expressions, we work from a simple model
with 8-shaped impurities.”™

An important point for calculating the linear response of a system is to consider
transitions from localized states to delocalized states, which have not previously been
studied. It is also important to use the exact sum rules; the approach of ignoring
transitions between Landau levels—the customary approach in the case of strong
magnetic fields—is justified in a study of the spectra of the system, but it may lead to a
qualitatively incorrect result for the response.

In the absence of an electric field, our system has states of two types: 1) deloca-
lized states, which are not split off from the Landau level, and 2) states which are split
off and which are localized at impurities.”™ Since the matrix elements of the Hall
currents between unperturbed degenerate states vanish, we can use the theory of the
linear response in an electric field here. According to this theory, the Hall conductivity
at the frequency o is
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where S is the area of the system, the index « specifies the delocalized and localized
states, n is the index of the Landau level, and f,,, is the Fermi distribution function.

Substituting the exact energy levels and the exact wave functions of the unper-
turbed system into (1), and making use of the completeness of these wave functions,*
we find an exact expression for the real part:

oy (W) = oz (W) + 011‘{ (w) ,

where D and L are the contributions from the delocalized and localized states. It is
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important to note that o5, for example, reflects not only virtual transitions between
delocalized states but also transitions from delocalized states to localized states (an
analogous assertion can be made for o). Their sum provides the ideal quantization at
o =0.

For o} (w), for example, we have the following expression (here and below, we
write the results for a single §-shaped impurity):
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where ¢ and ¢’ are the digamma and trigamma functions, N, is the degeneracy of the
Landau level, and w, is the cyclotron frequency. In the static limit, in the case of
completely filled »* Landau levels (it is sufficient to have only the delocalized states
filled), we find the ideal quantization of the Hall conductivity from these expressions at
T = 0: 05(0) = €*n*/27#i and 0%5(0) = 0. These values are also found for an arbitrary
number of impurities positioned arbitrarily far from the boundary (provided that the
number of impurities is lower than the degeneracy of the Landau level). Here are the
results for @0 and for #iw/e, <1:
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wheree, =E,, — E,, €, < fiw_/2. If the Landau level is completely filled, the second
term in (3) vanishes, so that at the accuracy level of these calculations (in terms of w),
the dynamic Hall response is the same as the response of a pure system: 0% (w) = €2/
2mh(l — 0*/w?)Z, f,. If A>0( A is the constant of the interaction with the impurity)
we have ok (w) <0 so that o}, {w) decreases when the localized state is filled. If 4 <0,
however, then at |4 | > A, with €, | > fiw_./(4n + 2), the contribution of the n-th local-
ized state to oy {w) becomes positive.

Let us examine in a qualitative way the case of many impurities with positive and
negative vlaues of A under the condition ; €N, (¥, is the number of impurities). In
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FIG. 1. a—Sketch of the Hall conductivity o vs the density n. The points n, (i = 1-3) correspond to the
complete filling of, respectively, 1) the delocalized states, 2) the entire Landau level, 3) the localized states
which are split off downward from the following Landau level and which satisfy the condition |€] > €,. 4)
The beginning of the filling of the delocalized states (curves 1, 2, and 3 correspond to frequencies
@y >, >03.) b—A structure without a dip arises only if there are impurities with A <0 and |€] > €,. c—In
all other cases there is a single-dip structure.

this case, localized states split off both upward and downward from each Landau level.
As the localized states which are split off upward from the (n — 1)th Landau level are
filled, the conductivity decreases, and it reaches the values in the pure system when the
level is completley filled. With a further filling of the states which are split of down-
ward from the n-th Landau level, the conductivity increases while the condition holds
|€, | > fiw. /(4n + 2) and then decreases again when this condition no longer holds. We
thus find a two-dip structure between the two successive Landau levels in the region of
localized states on a plot of the conductivity against the electron density or the chemi-
cal potential (the control voltage), if there are states split off downward which satisfy
the condition e, | > #iw, /(4n + 2). Alternatively, there is a simple dip if there are no
such states (Fig. 1). As the interaction with the impurities becomes weaker, the double-
hump structure in the Hall conductivity should fade away. This situation can be
arranged experimentally, for example, by applying a voltage to the base of a metal-
insulator-semiconductor structure to drive the inversion layer away from the bound-
ary and to thereby weaken the interaction with impurity states (which are concentrat-
ed for the most part at the surface).

We wish to thank L. V. Keldysh, D. A. Kirzhnits, and E. I. Rashba for useful
discussions and comments.

'K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

2B, M. Baskin, L. L. Magarill, and M. V. Entin, Zh. Eksp. Teor. Fiz. 75, 723 (1978) [Sov. Phys. JETP 48, 365
(1978)].

°R. E. Prange, Phys. Rev. B23, 4802 (1981).

*Yu. E. Lozovik, V. M. Farztdinov, and Zh. S. Gevorkyan, Preprint, Institute of Spectroscopy, Academy of
Sciences of the USSR, 1983.

Translated by Dave Parsons
Edited by S. J. Amoretty

181 JETP Lett, Vol. 39, No. 4, 25 February 1984 Lozovik et al. 181





