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Quantum corrections to the thermoelectric coefficient of a disordered two-
dimensional conductor due to the so-called fan diagrams are analyzed. The
dependence of these corrections on the magnetic field A is analyzed for various
relaxation mechanisms.

Let us examine the quantum corrections to the thermoelectric coefficient % (in the
expression j = — VT for the current density) of a two-dimensional (2D) “dirty”” con-
ductor in the case pg/ /%> 1, where py is the Fermi momentum, and / is the electron
mean free path. We consider the “fan” diagrams'? (Fig. 1) in the case in which the
electron-electron interaction can be ignored. Corresponding calculations were first
carried out by Ting e al.,> who concluded that the relative corrections to % and to the
conductivity o are equal. As a result, there would be no correction to the differential
thermoelectromotive force 7/0. Under these circumstances, an experimental study of
77 would reveal nothing new.

Our result is quite different: We conclude that the corrections to 7, i.e., 4.7, are
far smaller than would follow from Ref. 3. This correction can nevertheless be extract-
ed from the specific dependence on the magnetic field. A study of this correction can
yield further information on the relaxation processes which determine the quantum
corrections (information on the times 7, and 7,4, as discussed below). We believe it is
worthwhile, with the corresponding experimental data available, to compare the val-
ues found for 7, and 7, from studies of the thermoelectromotive force and the electri-
cal conductivity.

We calculate 7 by the /7 approach, as in Ref. 3: We calculate the coefficient Iin
the proportionality between the heat flux density Q and the electric field E (the Peltier
coefficient) and then use the Onsager relaxation = I7 /T. As a result of these calcula-
tions, we find?

FIG. 1.
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were n,(€) = [exple/T') — 117!, D (€) is the electron diffusion coefficient, averaged over
a surface of constant energy € (reckoned from the Fermi level 1), and C is the contribu-
tion of the fan diagrams.” The explicit expression for this contribution depends on the
scattering mechanism which eliminates the divergence of C(€). Let us consider two
such mechanisms.

We first consider the spin-spin scattering of electrons by magnetic impurities
combined with spin-orbit scattering.* In this case we would have

1 1
C(e) = Cy() + 56‘2 (e) - ECa ©. (2)
where
d
Cley = f—120__ G)

D(e)q* + Y,

and the times 7, appear in the pole expressions in Ref. 4. We then find

7 eT 3| L, /L,
Aen =— - — 8, = —|m=t /2
o 3 h ae[ 1YL, (4)

where L ?(€) = D (€)7;(e). We see that the resulting expression is not proportional to a
large logarithm.

In a magnetic field directed normal to the surface of the sample and satisfying the
condition a,, = (c#i/eH )"/*«l, the quantity S in (4) is replaced by S = — (D, + D,/
2 — @,/2), where

= 4 OX @y +1/2); %= a/4LN0), (5)

as can be shown by calculations analogous to those of Ref. 5. Here £ (g,x) is the Rie-
mann ¢ function. In strong magnetic fields, a /L, €, the correction A .7 falls off as 1/
H.

As the second mechanism we consider the inelastic scattering by the tunneling
states characteristic of amorphous metals. For this mechanism we find an expression
similar to (3) but with 1/7; replaced by 1/7,,where

- = ?15 th =
@I R (€ ecth 7. - (6)

The dimensionless quantity /3 (€) is proportional to the constant of the interaction of
electrons with two-level systems and to the concentration of these systems. In typical
amorphous metals it is 10721072 in order to magnitude. The characteristic value in
its functional dependence on € is u>T.
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FIG. 2.

Calculations for this case yield Eq. (4) with
P I ()
D(0) )

where the prime denotes a derivative with respect to €. In a magnetic field the function
S (H) becomes

, (7

D' (0) £'(0) 2na}; B(0)
"y F = (8)
{ D) 3(0)} Y10
3 % @2aydn T xPdx ' x 9
F('Y)-;z{, sh(n/27){> T exp<—nxcth2>. (9)

Figure 2 is a plot of the function F(y).

The reason why expression (9) is more complicated than (5) is that for inelastic
processes the time 7,(¢,7') depends strongly on the energy € in a region with a width of
order T, while the same region plays a role in the integral that determines A.7. We
wish to emphasize that this energy region is important for any inelastic process that
determines 7,, including (for example) the scattering of electrons by phonons. Experi-
ments on the 4 .9(H,T) dependence can thus yield information on the energy depen-
dence of the time 7, and thus on the nature of the mechanism for the inelastic relaxa-
tion.

In conclusion we wish to emphasize that we have studied only the “diffusion”
part of the thermoelectromotive force here. In principle, there is also a contribution to
the coefficient 7 from the phonon drag of electrons. In interpreting experimental data
we would like to make sure that this contribution is small. A suitable criterion might
be the temperature dependence of the main part of the thermoelectromotive coefficient
7.
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UThe calculation procedure will be described in detail in a separate paper.
2As far as we can see, the dependence of this quantity on € makes our results different from those of Ref. 3.
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