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An exact solution is constructed for the SU( ) main chiral field in two dimensions.
The particle spectrum, the S matrix, and the expectation values of the chiral
currents in external fields are determined from this solution.

1. The low-energy part of the interaction of Goldstone particles, which appear
upon spontaneous symmetry breaking, is determined completely by the symmetry
group G and is described by a G ® G-invariant nonlinear o model:

S =— d2 x tr -1 9 2 , 1
Mo S ¢ 9,8 (1)
where g( x), the so-called main chiral field, is an element of group G.

We know that in two dimensions (2D) the effective interaction of non-Abelian
Goldstone fields increases without bound with decreasing energy scale.! Consequently,
the low-energy properties of the system, in particular, the spectrum of the particles, lie
outside the range of applicability of the standard methods of quantum field theory. We
know, on the other hand, that a 2D chiral field has an infinite series of conservation
laws?? and a factorized scattering theory, so that it is completely integrable.

In this letter we summarize the results of an exact solution of the SU(V) main
chiral field based on an idea suggested by Polyakov several years ago (see Ref. 4, for
example). In particular, we show that non-Abelian Goldstone bosons are massive and
form the basis of a ring of representations of the group G& G
with the typical spectrum for G = SU(NV):

mk=mM,- k=1..N-1. 2)
sin(m /N )

2. Our method is described in detail in Ref. 5, where a solution is derived for the
simplest SU(2) chiral model. The method is based on the equivalence of the chiral field
and the {1 + 1) model of interacting fermions. The latter is also integrable, but it has
been traditional to apply the Bethe Ansatz to it.

We denote by ¢=y¢(@ = 1...N; f=1..N ;) the fermion field which forms the
“colored” multiplet and the auxiliary “flavored” multiplet; j2 =3 fﬁ FYuT ¥ 55 the 7
are the generators of SU(V). It is shown in Ref. 5 that in the limit N ;o a model
with the Lagrangian

- A
L =iyoy + Nojy i (3)
is equivalent to the main chiral field.

214 0021-3640/84/040214-05%$01.00 © 1984 American Institute of Physics 214



Let us outline the proof. We introduce the intermediate vector field
AoJifi—A [ fa — Mo A AY; after integrating over the fermion fields, we find the effec-
tive action

1
— — 2 By
S=- NfW {4} fd x——2>\0 tr(A#A )

W{A4)}=ilnDet(id + A); A=ty (4)

It is shown in Ref. 5 that the gauge-invariant functional W {4 ] is a 2D version of the
Wess-Zumino action. In a Euclidean space we would have

167W{4} = —tr {fd’x (A, A¥) + gifd3gAaABA-7e“ﬁ7}. (5)

Here A, (€)= a"'d,ala = 1,2,3) is defined in the interior of a 3D sphere Q, whose
boundary is the stereographic projection of the x plane under the condition
a=g,g-";wehaved, =A4,+idy=g;'d, g, atthe boundary. In particular, it
follows from (4) and (5) that in the limit N ,— oo the fluctuations of 4,, are suppressed,
and at N, = o the field 4, is a purely gauge field: g, =g =g, 4, =g~! .8 It
follows that at N ; = oo the actions (1) and (4) are the same. At a finite NV ;, we might
note, the fermion model has only a single (right) SU(V ) invariance. The left symmetry
group is reconstructed only at N ; = .

3. The fermion model (3) is completely integrable at a finite & . Omitting the
details of the solution, we give the hierarchy of Bethe equations which arise when
periodic boundary conditions for the Bethe wave function are satisfied”: The eigen-
state of 2.4 particles belonging to a representation of the symmetry group with the
senior weight [lwﬂ_M‘, M AMZ,...,N M"’"] is described by the rapidities
(k{Ehek FHA VA ) (/= 1.N — 1), which satisfy the equations

M, ]
exp(ik{)L)= TI eNf(U/,\0 -ADy =21 i=1.. NV,
a =1
NMz 2) 1) Ml
I e -Aih=1m o -A8); (6

M. Len, (g~ N
g=1 =1

g=11

M+1- ; . M, , R
0 e, (W*0- M =1 e, Y/ - M)y a=1..M; j=1..N-1.

T=t1 f=1 B=1 !

where e, (x) = (x — in/2)/( x + in/2). The energy of the state is E = Z(k{ ")~ k,7)

4. In the thermodynamic limit the solutions of Egs. (6} group into complexes of
order n=1..0:A), =AY +ir51 —k) (k= 1,..,n). An arbitrary state is deter-
mined by the distributions of particles and holes in the bands of the various complexes.
We denote by p/(4 ) and p/( 4 ) the distributions of particles and holes in the band of
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the N, complexes corresponding to the jth column of the Young tableay;
1i(A) 19 -(A)and 70 (A), P (A) are the same for the
n=1.N,—1and m=N,+ l..c complexes. After the necessary calculations, we
find spectral equations relating the particle and hole distributions. Here are the equa-
tions for N ; = co:

j ~k J U o) = h<2“7\>-
PN +Rjk*P Q)+am"(rm + m)()—mic TV ’

r
ey +amm w ) *1E M=e,* 0 Q);

RO+ A Cl) ) =0, * T ; )
the energy of the state and the numbersg; =M, , +M,;_, — 2M; , which charac-
terize the symmetry of the state, are

&= (L/N?)-E = const + fdx]zm]. ch 27/ AT N); ¢, = 1B 0an, (8)

and the m, are given by (2). The asterisk (*} means convolution, and the Fourier
transforms of the integral operators used here are

Ry = th 'LV AB) | 4i0)< gy © RO max b)) o D) shiminty, W]
ik 2 jk ik 9 shl—V(-*J
2

AP = An(;:); n m=1..0;

3

, 31) 1
'N) — N/ -1 _ . : =
CRY = (AN = 8§y, 8 % Bk =1LN-1. (9)
2Ch3

a, (w) = e lwin/z

5. The spectral equations embody all the information about the spectrum of parti-
cles, the scattering amplitudes, and the thermodynamic properties. In this case we
draw the following conclusions from these equations.

1) The ground state of the system is formed by complexes of order N ;.

2) the g7, 14, and r, distributions describe excited states: massive physical parti-
cles with a mass spectrum {2), which are isotopic multiplets of the SU(N )2 SU(N)
group. The multiplets transform as antisymmetric SU{N )& SU(N) tensors of rank
Jj=1,..,N — 1. Since the jth representation is equivalent to the (N — jjth conjugate
representation, the jth and (N — jith particles are coupled by a crossing transforma-
tion.

3) The jth particle is a bound state of j fundamental particles. The fundamental
particles belong to a vector representation. In particular, a fundamental antiparticle
may be regarded as a bound state of N — 1 particles.

4) The two-particle factorized .S matrix of the fundamental particles is
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S11(0) = exp((®(0)[0,(6) ® 0x(B) ), (10)

where 0 = In s=2m £F=2s" 5 the difference between the rapidities of the scattering
particles,

pr) )
—_ P+ - —‘A—f dw ! 2
orr) = Prm) * Frir) T 2O =S (Ryi(w)—1),

N

and the operators P /, project onto the symmetric (antisymmetric) left (right) scatter-
ing channel. The scattering amplitudes of the other particles are found by “blending”’
the fundamental particles.

We find an unexpected relationship between the chiral field and the Gross-Nevier

model®:
| A i
S 0) = 57V 6) @ sNey] —2-——X (11)
¢ @+ 2111

where SV is the S matrix of the Gross-Nevier model.®

The S matrix'® is a minimal, unitary, analytic, relativistic, factorized, SU(N)®
SU(N }-invariant S matrix. It was derived in Ref. 9 by a factorized bootstrap method.'®
The scattering amplitudes for the bound states are given in the same paper.

6. The spectral equations can be used to analyze the energy of the ground state of
the chiral field as a function of external fields. Let us add to action (1) a term h; L 1, or
let us add 4; 1//7/0H 1 to the fermion Lagrangian (3), where L }, = tr(g ~1(90gH J) is the
Neter current and the H’/ = diag(0,...1 — 1 .,0) form the bas1s of a Cartan subalge-
bra. We then have &(h ;) =min{&(q ;) — Z;h; h;§p’(A)dA }. We introduce the func-
tions €/*)( A ), which satisfy the equations

2n .
eI + Ry * M = b~ m].ch<—1—v)\> , j=1.N-1, (12)
It can be shown that we have €/ *'>0and €l ' = 0if |4 |<A " or €, '<Oand &, "' = O if
A 3410
8h) = 8(0) + T me® Nych - ax 13
/i ; i€ Me N . (13)

Equation (13) and the conditions €/ *( 4+ A [”) = 0 unambiguously determine 4 | and
& (h;). They are easily analyzed in limiting cases. We assume A ; =hé , and
Jo=(L§) = —3%|h)/Ih. The condition 0 <k — m, <m, corresponds to the thresh-
old for the production of a massive particle. At h>m, the expectation value of the
current can be calculated by summing the main logarithms of the perturbation theory.
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In the two-loop approximation we have J«z '40O(z), where z7'+1}
NlIn Nz=Nln 2. The same result can be derived from Egs. (12) and (13).

7. The limit N = <o, in which the chiral field is described by the sum of planar
diagrams, is of particular interest. In this limit the S matrix takes the surprisingly
simple form

(A, A, - A\ 4 = a4
g4 ' ’)(o)=(l+0(N’21/{IR®IL +(IL®PR+PL®IR)<_ 7rz>

I
2mi \?
E2ACHIE

where A4, = (/;, ;) Pr = 6,,,55r2r;’ and I, =6 lr;c?rﬁ. Curiously, Egs. (12) can be
solved analytically, and & (k) can be calculated in terms of Bessel functions, so that it
becomes possible to study the crossover between the regions of high and low energies.
The corresponding analysis will be published separately, as will a solution of the main
chiral field for other classical groups.

I wish to thank A. M. Polyakov, A. M. Tsvelik, A. B. Zamolodchikov, N. Yu.
Reshetikhin, and A. A. Migdal for useful discussions in various stages of this study.

UIn order to solve the fermion model it is necessary to carry out an accurate regularization at high energies.
The most systematic approach, involving solution of the nonrelativistic version of model (3), is described in
detail in Ref. 6.
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