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The relaxation to an equilibrium configuration during the longitudinal contraction
of an ideally conducting plasma in a reversed-field system is analyzed. Since the
problem is multidimensional, the resulting shock wave may be a rarefaction wave.

One of the questions which arises in research on systems with a reversed magnetic
field (see the review by Finn and Sudan,’ for example) is the relaxation from the initial
plasma configuration to the equilibrium configuration. In this letter we analyze this
relaxation with the help of a simple two-dimensional model.

We consider a system in which a long, ribbon-shaped, ideally conducting plasma
lies halfway between two ideally conducting walls (Fig. 1). The transverse equilibrium
(along the y axis) is established more rapidly than the longitudinal equilibrium in this
configuration; in other words, the equality of the plasma pressure and the magnetic
pressure, p = H ?/8m, which holds over the greater part of the plasma surface, is violat-
ed near its ends. If the thickness of the plasma satisfies 24 <2d, where 24 is the distance
between the walls, then we have H 2/87>p at the ends. As the magnetic lines of force
become constricted, they compress the plasma in the longitudinal direction; this com-
pression is accompanied by a transverse expansion of the plasma to its equilibrium
thickness (h, = d /2; see below), as shown in Fig. 2. This thickening moves along the
plasma at a velocity higher than the propagation velocity of small perturbations and is
thus of the nature of a shock wave, analogous to a bore at the surface of the liquid.>
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FIG. 1.
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The state of the plasma behind the shock front can be found from the conserva-

tion laws in the usual way. Transforming to a coordinate system moving with the
wavefront, and integrating the MHAD equations expressing the conservation of mass,
momentum, and energy (see Ref. 3, for example) over the volume abcd in Fig. 2, we
find the system of equations
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{v is the plasma flow velocity, p is the density, ¥ is the adiabatic index, and the
subscripts 1 and 2 specify the states respectively ahead of and behind the front). Using
the equality p = H °/8w, we find from these equations the equation of the shock adia-
bat:

PR (2hy —d)py + (hy/(y = 1) + d)p, @

prhy (hy/(y — 1)+ dJp, + (2hy — dJp,

Since the magnetic flux between the ideally conducting plasma and the walls,
@ = H(d — h), is conserved, we have p, = p,(d — h,°/(d — h,)>. The plasma flow ve-
locities found from (1) satisfy the necessary conditions v, > ¢, and v, < ¢,, where ¢ is the
propagation velocity of small perturbations: v,, v,~—>c as A, — #,—0.

Formally, we could substitute any value of 4, into Eq. (2}, but since the plasma
behind the shock front must be at longitudinal equilibrium as well as at transverse
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equilibrium we find a completely definite value for /,. To show this, we integrate the
momentum conservation equation in the coordinate system with v, = 0 over the vol-
ume efgh in Fig. 2. Using the fact that we have H—»0 as boundary ¢f is moved to the
left, we find
H,
pP2hy = — (d—hy) =0,
8n

from which we find 4, = d /2. The same relation follows from the circumstance that
the energy in the system is taken from the magnetic field.

For an intense shock wave (h,>h,) we have p, = 4 p,, and we can rewrite Eq. (2)
as
P2 2hy 3y +1

1 d vy-1

(3)

If the ratio 2h,/d is small, the propagation of the shock wave is accompanied by a
rarefaction of the plasma (the density per unit length, ph, and the temperature never-
theless increase).

The front structure of this shock wave can be found analytically only in the
approximation of a low intensity. In the linear approximation, in the absence of dissi-
pation, waves of two types can propagate at the plasma surface, with the dispersion
relation

2 p

w? = — kkctheh[thk(d - )1’ , «? =k — w? — , (4)
P P

where v = — 1 for the antisymmetric mode (with respect to the x axis), which does not

alter the plasma volume and v = + 1 for the symmetric mode, which corresponds to
the wave under consideration here. The propagation velocity for long waves [kA,
k (d — h )<1] of the symmetric mode,

2 P 2h
=7
p 2—-7)h +~vyd

becomes equal to the shock-wave velocity (1) in the limit A, — 4;—0. For nonlinear
dispersive waves of small amplitude, viscosity leads to the familiar oscillatory struc-
ture of the front (if the viscosity is sufficiently low.? In the more important case of a
strong shock wave, the front structure cannot be described analytically; we can only
assert that if a steady-state structure exists then it is determined not only by the mean
free path of the particles in the plasma but also by the characteristic transverse dimen-
sion of the system, d.

In summary, it has been shown that in a system with a reversed magnetic field the
magnetohydrodynamics of a plasma with an ideal skin effect allows the propagation of
some distinctive rarefaction shock waves. Through these waves, the initial plasma
configuration relaxes to the equilibrium configuration.

We wish to thank L. I. Rudakov for suggesting this problem.
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