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It is shown by numerical calculations that it is possible to transform an arbitrary
initial perturbation in a plasma with a bounded electron beam into an
eigenfunction. The physical reasons for the establishment of this solution and the
conditions for the applicability of the method of eigenfunctions and
noneigenfunctions in the theory of the beam-plasma instability of bounded
electron beams are studied.

An important problem in the physics of the beam-plasma instability is how the
transverse geometric dimensions of the beam affect the instability growth rate. An
effective method for studying this problem, the method of noneigenfunctions, was
proposed in Ref. 1. This method has the disadvantage that in order to achieve the
completeness and orthogonality of the wave functions used there it is necessary to
satisfy the condition 4,¢>1, where 4, is the width of the wave packet, and ¢ is the
characteristic transverse wave number. This disadvantage becomes particularly ob-
vious when we note that the maximum growth rate of the beam-plasma instability is
reached for perturbations with g = 0.

In the present letter we attempt to circumvent this difficulty, and we analyze the
evolution of initial perturbations with ¢ =0.

According to Ref. 1, the equation which is the starting point and which describes
the plasma waves of a plasma of density n, under the influence of a spatially bounded
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electron beam without a magnetic field is
C2 ) \/
(———t'—~—Al)(Al~k)\Il--27rwo-—»————(t+ ~—)nb (1)

where o, is the plasma frequency, e* is the electron charge, m is the electron mass C,
is the speed of sound in the plasma, V7 is the thermal velocity spread of the beam
electrons, and n, is the density of the beam electrons, which we write in the form
n, =n, exp{ — (r*/24 %)} (which corresponds to a cylindrical beam with a Gaussian
density profile). In deriving (1) we assumed that the beam is directed along the z axis,
and we accordingly adopted a potential perturbation
C 2
W=t r)exp { —iwet - i 2(; kit+ik,z }.
(]

In all the calculations below we assume k, = w,/V, where ¥ is the directed velocity of
the beam electrons. We will solve Eq. (1) by the initial-perturbation method; i.e., we
will construct a Cauchy problem for Eq. (1):

W(r=0, r)=Vofr) (2)

By virtue of the cylindrical symmetry of the beam, the initial perturbations should also
be chosen to be cylindrically symmetric. To solve (1) with initial condition (2) we
expand Y (t,7) in a series in Laguerre functions:

o0 o0

Y(t,r)= Za (t)¥ = >: a,(t)L (r*/A%) exp { - ( 12088), (3)
n=0

where 4, is an arbitrary parameter, and the L, are the Laguerre polynomials. Substi-
tuting (3) into Eq. (1) and initial condition (2), we find a system of ordinary differential
equations for the a,, (¢ ):

mZOAn m T= z Vn Xk %, (4)
K=0

with the initial conditions
a,(t=0)=a,, , (5)

where 4, ,, is the tridiagonal matrix

= ' 2 2
Ay = I, ()~ k)Y, a?,
0
and the matrix ¥, ,, is, correspondingly,

2 *® 2 =
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n,m n 2("-’0 l( .L z om V}_( 28 b mr'

System (4) with initial conditions (5) has been integrated numerically. In choosing the
initial conditions we set all the @, except a,, equal to zero (a Gaussian packet), and we
restricted the number of functions ¥, to 10-12 (since the amplitude of the 10th to 12th
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FIG. 1. The width of the eigenfunction, A, vs the beam radius 4, for various parameters
k= (C2Vin/(Vin,): 1—K = 1.5; 2—x =3X 107", 3—x = 61072

function turns out to be four or five orders of magnitude smaller than the amplitude of
the O th function in the calculations). In studying the solutions (4} over broad ranges of
the plasma and beam parameters, we found that the solution of problem (4), {5) con-
verges on an eigenfunction. The physical meaning of this solution is easily seen from
the following arguments: Any arbitrary initial perturbation of the Gaussian-packet
type with dimensions much smaller than the transverse dimensions of the beam must
“spread out” without limit because of dispersion. In the opposite limiting case, i.e.,
when the beam width is much smaller than the perturbation width, only the part of the
perturbation in the beam volume experiences the growth caused by the beam-plasma
instability; the rest of the perturbation is essentially unaffected by this instability. As a
result, the effective dimensions of the perturbation decrease, despite the dispersion.
The competition between these processes gives rise to an equilibrium perturbation,
whose shape remains constant over time and which grows as a whole under the influ-
ence of the beam. It is natural to treat such a perturbation as an eigenfunction of Eq.
{1). Figure 1 shows the effective width of the equilibrium perturbation, 4., as a
function of the beam radius 4,, where

o0

2 - 1 * 2. 6
Ae ff ———————‘2\[/ O)¥0) fo W *(r) U(r)dr (6)

We see that in the limit 4, —0, we have 4 ;- 0. The reason for this result is that the
beam “power” falls off with decreasing 4, , and the ability of the beam to compress the
perturbation accordingly fades. It follows that in the case 4 4>4, and with a small
growth rate for the eigenfunction we should use the method of initial perturbations in
the spirit of Refs. 1 and 2 to analyze the beam-plasma instability. In the case A+ 54,
on the other hand, it is sufficient to analyze the behavior of the eigenfunction. The
width of the eigenfunction should also be followed when we are interested in the effect
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of plasma inhomogeneities outside the beam on the growth rate for the beam-plasma
instability (see Ref. 3, for example).
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